密集匹配SGM python
作者:互联网
记录一下
代码参考:https://github.com/bkj/sgm
论文: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4359315
理论部分参考:
https://www.cnblogs.com/wxxuan/p/13595014.html
https://zhuanlan.zhihu.com/p/49272032
https://zhuanlan.zhihu.com/p/159055657
"""
python implementation of the semi-global matching algorithm from Stereo Processing by Semi-Global Matching
and Mutual Information (https://core.ac.uk/download/pdf/11134866.pdf) by Heiko Hirschmuller.
author: David-Alexandre Beaupre
date: 2019/07/12
"""
import argparse
import sys
import time as t
import cv2
import numpy as np
class Direction:
def __init__(self, direction=(0, 0), name='invalid'):
"""
represent a cardinal direction in image coordinates (top left = (0, 0) and bottom right = (1, 1)).
:param direction: (x, y) for cardinal direction.
:param name: common name of said direction.
"""
self.direction = direction
self.name = name
# 8 defined directions for sgm
N = Direction(direction=(0, -1), name='north')
NE = Direction(direction=(1, -1), name='north-east')
E = Direction(direction=(1, 0), name='east')
SE = Direction(direction=(1, 1), name='south-east')
S = Direction(direction=(0, 1), name='south')
SW = Direction(direction=(-1, 1), name='south-west')
W = Direction(direction=(-1, 0), name='west')
NW = Direction(direction=(-1, -1), name='north-west')
class Paths:
def __init__(self):
"""
represent the relation between the directions.
"""
self.paths = [N, NE, E, SE, S, SW, W, NW]
self.size = len(self.paths)
self.effective_paths = [(E, W), (SE, NW), (S, N), (SW, NE)]
class Parameters:
def __init__(self, max_disparity=64, P1=5, P2=70, csize=(7, 7), bsize=(3, 3)):
"""
represent all parameters used in the sgm algorithm.
:param max_disparity: maximum distance between the same pixel in both images.
:param P1: penalty for disparity difference = 1
:param P2: penalty for disparity difference > 1
:param csize: size of the kernel for the census transform.
:param bsize: size of the kernel for blurring the images and median filtering.
"""
self.max_disparity = max_disparity
self.P1 = P1
self.P2 = P2
self.csize = csize
self.bsize = bsize
def load_images(left_name, right_name, parameters):
"""
read and blur stereo image pair.
:param left_name: name of the left image.
:param right_name: name of the right image.
:param parameters: structure containing parameters of the algorithm.
:return: blurred left and right images.
"""
left = cv2.imread(left_name, 0)
left = cv2.GaussianBlur(left, parameters.bsize, 0, 0)
right = cv2.imread(right_name, 0)
right = cv2.GaussianBlur(right, parameters.bsize, 0, 0)
return left, right
def get_indices(offset, dim, direction, height):
"""
for the diagonal directions (SE, SW, NW, NE), return the array of indices for the current slice.
:param offset: difference with the main diagonal of the cost volume.
:param dim: number of elements along the path.
:param direction: current aggregation direction.
:param height: H of the cost volume.
:return: arrays for the y (H dimension) and x (W dimension) indices.
"""
y_indices = []
x_indices = []
for i in range(0, dim):
if direction == SE.direction:
if offset < 0:
y_indices.append(-offset + i)
x_indices.append(0 + i)
else:
y_indices.append(0 + i)
x_indices.append(offset + i)
if direction == SW.direction:
if offset < 0:
y_indices.append(height + offset - i)
x_indices.append(0 + i)
else:
y_indices.append(height - i)
x_indices.append(offset + i)
return np.array(y_indices), np.array(x_indices)
def get_path_cost(slice, offset, parameters):
"""
part of the aggregation step, finds the minimum costs in a D x M slice (where M = the number of pixels in the
given direction)
:param slice: M x D array from the cost volume.
:param offset: ignore the pixels on the border.
:param parameters: structure containing parameters of the algorithm.
:return: M x D array of the minimum costs for a given slice in a given direction.
"""
other_dim = slice.shape[0]
disparity_dim = slice.shape[1]
disparities = [d for d in range(disparity_dim)] * disparity_dim
disparities = np.array(disparities).reshape(disparity_dim, disparity_dim)
penalties = np.zeros(shape=(disparity_dim, disparity_dim), dtype=slice.dtype)
penalties[np.abs(disparities - disparities.T) == 1] = parameters.P1
penalties[np.abs(disparities - disparities.T) > 1] = parameters.P2
minimum_cost_path = np.zeros(shape=(other_dim, disparity_dim), dtype=slice.dtype)
minimum_cost_path[offset - 1, :] = slice[offset - 1, :]
for i in range(offset, other_dim):
previous_cost = minimum_cost_path[i - 1, :]
current_cost = slice[i, :]
costs = np.repeat(previous_cost, repeats=disparity_dim, axis=0).reshape(disparity_dim, disparity_dim)
costs = np.amin(costs + penalties, axis=0)
minimum_cost_path[i, :] = current_cost + costs - np.amin(previous_cost)
return minimum_cost_path
def aggregate_costs(cost_volume, parameters, paths):
"""
second step of the sgm algorithm, aggregates matching costs for N possible directions (8 in this case).
:param cost_volume: array containing the matching costs.
:param parameters: structure containing parameters of the algorithm.
:param paths: structure containing all directions in which to aggregate costs.
:return: H x W x D x N array of matching cost for all defined directions.
"""
height = cost_volume.shape[0]
width = cost_volume.shape[1]
disparities = cost_volume.shape[2]
start = -(height - 1)
end = width - 1
aggregation_volume = np.zeros(shape=(height, width, disparities, paths.size), dtype=cost_volume.dtype)
path_id = 0
for path in paths.effective_paths:
print('\tProcessing paths {} and {}...'.format(path[0].name, path[1].name), end='')
sys.stdout.flush()
dawn = t.time()
main_aggregation = np.zeros(shape=(height, width, disparities), dtype=cost_volume.dtype)
opposite_aggregation = np.copy(main_aggregation)
main = path[0]
if main.direction == S.direction:
for x in range(0, width):
south = cost_volume[0:height, x, :]
north = np.flip(south, axis=0)
main_aggregation[:, x, :] = get_path_cost(south, 1, parameters)
opposite_aggregation[:, x, :] = np.flip(get_path_cost(north, 1, parameters), axis=0)
if main.direction == E.direction:
for y in range(0, height):
east = cost_volume[y, 0:width, :]
west = np.flip(east, axis=0)
main_aggregation[y, :, :] = get_path_cost(east, 1, parameters)
opposite_aggregation[y, :, :] = np.flip(get_path_cost(west, 1, parameters), axis=0)
if main.direction == SE.direction:
for offset in range(start, end):
south_east = cost_volume.diagonal(offset=offset).T
north_west = np.flip(south_east, axis=0)
dim = south_east.shape[0]
y_se_idx, x_se_idx = get_indices(offset, dim, SE.direction, None)
y_nw_idx = np.flip(y_se_idx, axis=0)
x_nw_idx = np.flip(x_se_idx, axis=0)
main_aggregation[y_se_idx, x_se_idx, :] = get_path_cost(south_east, 1, parameters)
opposite_aggregation[y_nw_idx, x_nw_idx, :] = get_path_cost(north_west, 1, parameters)
if main.direction == SW.direction:
for offset in range(start, end):
south_west = np.flipud(cost_volume).diagonal(offset=offset).T
north_east = np.flip(south_west, axis=0)
dim = south_west.shape[0]
y_sw_idx, x_sw_idx = get_indices(offset, dim, SW.direction, height - 1)
y_ne_idx = np.flip(y_sw_idx, axis=0)
x_ne_idx = np.flip(x_sw_idx, axis=0)
main_aggregation[y_sw_idx, x_sw_idx, :] = get_path_cost(south_west, 1, parameters)
opposite_aggregation[y_ne_idx, x_ne_idx, :] = get_path_cost(north_east, 1, parameters)
aggregation_volume[:, :, :, path_id] = main_aggregation
aggregation_volume[:, :, :, path_id + 1] = opposite_aggregation
path_id = path_id + 2
dusk = t.time()
print('\t(done in {:.2f}s)'.format(dusk - dawn))
return aggregation_volume
def compute_costs(left, right, parameters, save_images):
"""
first step of the sgm algorithm, matching cost based on census transform and hamming distance.
:param left: left image.
:param right: right image.
:param parameters: structure containing parameters of the algorithm.
:param save_images: whether to save census images or not.
:return: H x W x D array with the matching costs.
"""
assert left.shape[0] == right.shape[0] and left.shape[1] == right.shape[1], 'left & right must have the same shape.'
assert parameters.max_disparity > 0, 'maximum disparity must be greater than 0.'
height = left.shape[0]
width = left.shape[1]
cheight = parameters.csize[0]
cwidth = parameters.csize[1]
y_offset = int(cheight / 2)
x_offset = int(cwidth / 2)
disparity = parameters.max_disparity
left_img_census = np.zeros(shape=(height, width), dtype=np.uint8)
right_img_census = np.zeros(shape=(height, width), dtype=np.uint8)
left_census_values = np.zeros(shape=(height, width), dtype=np.uint64)
right_census_values = np.zeros(shape=(height, width), dtype=np.uint64)
print('\tComputing left and right census...', end='')
sys.stdout.flush()
dawn = t.time()
# pixels on the border will have no census values
for y in range(y_offset, height - y_offset):
for x in range(x_offset, width - x_offset):
left_census = np.int64(0)
center_pixel = left[y, x]
reference = np.full(shape=(cheight, cwidth), fill_value=center_pixel, dtype=np.int64)
image = left[(y - y_offset):(y + y_offset + 1), (x - x_offset):(x + x_offset + 1)]
comparison = image - reference
for j in range(comparison.shape[0]):
for i in range(comparison.shape[1]):
if (i, j) != (y_offset, x_offset):
left_census = left_census << 1
if comparison[j, i] < 0:
bit = 1
else:
bit = 0
left_census = left_census | bit
left_img_census[y, x] = np.uint8(left_census)
left_census_values[y, x] = left_census
right_census = np.int64(0)
center_pixel = right[y, x]
reference = np.full(shape=(cheight, cwidth), fill_value=center_pixel, dtype=np.int64)
image = right[(y - y_offset):(y + y_offset + 1), (x - x_offset):(x + x_offset + 1)]
comparison = image - reference
for j in range(comparison.shape[0]):
for i in range(comparison.shape[1]):
if (i, j) != (y_offset, x_offset):
right_census = right_census << 1
if comparison[j, i] < 0:
bit = 1
else:
bit = 0
right_census = right_census | bit
right_img_census[y, x] = np.uint8(right_census)
right_census_values[y, x] = right_census
dusk = t.time()
print('\t(done in {:.2f}s)'.format(dusk - dawn))
if save_images:
cv2.imwrite('left_census.png', left_img_census)
cv2.imwrite('right_census.png', right_img_census)
print('\tComputing cost volumes...', end='')
sys.stdout.flush()
dawn = t.time()
left_cost_volume = np.zeros(shape=(height, width, disparity), dtype=np.uint32)
right_cost_volume = np.zeros(shape=(height, width, disparity), dtype=np.uint32)
lcensus = np.zeros(shape=(height, width), dtype=np.int64)
rcensus = np.zeros(shape=(height, width), dtype=np.int64)
for d in range(0, disparity):
rcensus[:, (x_offset + d):(width - x_offset)] = right_census_values[:, x_offset:(width - d - x_offset)]
left_xor = np.int64(np.bitwise_xor(np.int64(left_census_values), rcensus))
left_distance = np.zeros(shape=(height, width), dtype=np.uint32)
while not np.all(left_xor == 0):
tmp = left_xor - 1
mask = left_xor != 0
left_xor[mask] = np.bitwise_and(left_xor[mask], tmp[mask])
left_distance[mask] = left_distance[mask] + 1
left_cost_volume[:, :, d] = left_distance
lcensus[:, x_offset:(width - d - x_offset)] = left_census_values[:, (x_offset + d):(width - x_offset)]
right_xor = np.int64(np.bitwise_xor(np.int64(right_census_values), lcensus))
right_distance = np.zeros(shape=(height, width), dtype=np.uint32)
while not np.all(right_xor == 0):
tmp = right_xor - 1
mask = right_xor != 0
right_xor[mask] = np.bitwise_and(right_xor[mask], tmp[mask])
right_distance[mask] = right_distance[mask] + 1
right_cost_volume[:, :, d] = right_distance
dusk = t.time()
print('\t(done in {:.2f}s)'.format(dusk - dawn))
return left_cost_volume, right_cost_volume
def select_disparity(aggregation_volume):
"""
last step of the sgm algorithm, corresponding to equation 14 followed by winner-takes-all approach.
:param aggregation_volume: H x W x D x N array of matching cost for all defined directions.
:return: disparity image.
"""
volume = np.sum(aggregation_volume, axis=3)
disparity_map = np.argmin(volume, axis=2)
return disparity_map
def normalize(volume, parameters):
"""
transforms values from the range (0, 64) to (0, 255).
:param volume: n dimension array to normalize.
:param parameters: structure containing parameters of the algorithm.
:return: normalized array.
"""
return 255.0 * volume / parameters.max_disparity
def get_recall(disparity, gt, args):
"""
computes the recall of the disparity map.
:param disparity: disparity image.
:param gt: path to ground-truth image.
:param args: program arguments.
:return: rate of correct predictions.
"""
gt = np.float32(cv2.imread(gt, cv2.IMREAD_GRAYSCALE))
gt = np.int16(gt / 255.0 * float(args.disp))
disparity = np.int16(np.float32(disparity) / 255.0 * float(args.disp))
correct = np.count_nonzero(np.abs(disparity - gt) <= 3)
return float(correct) / gt.size
def sgm():
"""
main function applying the semi-global matching algorithm.
:return: void.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--left', default='cones/im2.png', help='name (path) to the left image')
parser.add_argument('--right', default='cones/im6.png', help='name (path) to the right image')
parser.add_argument('--left_gt', default='cones/disp2.png', help='name (path) to the left ground-truth image')
parser.add_argument('--right_gt', default='cones/disp6.png', help='name (path) to the right ground-truth image')
parser.add_argument('--output', default='disparity_map.png', help='name of the output image')
parser.add_argument('--disp', default=64, type=int, help='maximum disparity for the stereo pair')
parser.add_argument('--images', default=False, type=bool, help='save intermediate representations')
parser.add_argument('--eval', default=True, type=bool, help='evaluate disparity map with 3 pixel error')
args = parser.parse_args()
left_name = args.left
right_name = args.right
left_gt_name = args.left_gt
right_gt_name = args.right_gt
output_name = args.output
disparity = args.disp
save_images = args.images
evaluation = args.eval
dawn = t.time()
parameters = Parameters(max_disparity=disparity, P1=10, P2=120, csize=(7, 7), bsize=(3, 3))
paths = Paths()
print('\nLoading images...')
left, right = load_images(left_name, right_name, parameters)
print('\nStarting cost computation...')
left_cost_volume, right_cost_volume = compute_costs(left, right, parameters, save_images)
if save_images:
left_disparity_map = np.uint8(normalize(np.argmin(left_cost_volume, axis=2), parameters))
cv2.imwrite('disp_map_left_cost_volume.png', left_disparity_map)
right_disparity_map = np.uint8(normalize(np.argmin(right_cost_volume, axis=2), parameters))
cv2.imwrite('disp_map_right_cost_volume.png', right_disparity_map)
print('\nStarting left aggregation computation...')
left_aggregation_volume = aggregate_costs(left_cost_volume, parameters, paths)
print('\nStarting right aggregation computation...')
right_aggregation_volume = aggregate_costs(right_cost_volume, parameters, paths)
print('\nSelecting best disparities...')
left_disparity_map = np.uint8(normalize(select_disparity(left_aggregation_volume), parameters))
right_disparity_map = np.uint8(normalize(select_disparity(right_aggregation_volume), parameters))
if save_images:
cv2.imwrite('left_disp_map_no_post_processing.png', left_disparity_map)
cv2.imwrite('right_disp_map_no_post_processing.png', right_disparity_map)
print('\nApplying median filter...')
left_disparity_map = cv2.medianBlur(left_disparity_map, parameters.bsize[0])
right_disparity_map = cv2.medianBlur(right_disparity_map, parameters.bsize[0])
cv2.imwrite(f'left_{output_name}', left_disparity_map)
cv2.imwrite(f'right_{output_name}', right_disparity_map)
if evaluation:
print('\nEvaluating left disparity map...')
recall = get_recall(left_disparity_map, left_gt_name, args)
print('\tRecall = {:.2f}%'.format(recall * 100.0))
print('\nEvaluating right disparity map...')
recall = get_recall(right_disparity_map, right_gt_name, args)
print('\tRecall = {:.2f}%'.format(recall * 100.0))
dusk = t.time()
print('\nFin.')
print('\nTotal execution time = {:.2f}s'.format(dusk - dawn))
if __name__ == '__main__':
sgm()
标签:direction,匹配,parameters,python,cost,SGM,offset,np,left 来源: https://blog.csdn.net/summermaoz/article/details/109955570