朴素贝叶斯分类器 (Naive Bayes Classifier) python实现
作者:互联网
简单实现来自b站大神的视频讲解:https://www.bilibili.com/video/BV1qs411a7mT
详情可以看视频链接,讲的非常好。
1 # coding=utf-8 2 from __future__ import division 3 from numpy import array 4 5 def naive_bs(failed_number, drunk_number, shopping_number, study_number, expected_drunk, expected_shopping, expected_study): 6 7 ex_failed = 0 8 ex_not_failed = 0 9 10 for i in range(0, len(failed_number)): 11 if study_number[i] == 0: 12 ex_failed = ex_failed + 1 13 elif study_number[i] == 1: 14 ex_not_failed = ex_not_failed + 1 15 16 # 统计p(x?|y)出现的概率 17 # 计算不同情况 18 aa = 0 19 bb = 0 20 for i in range(0, len(drunk_number)): 21 if expected_drunk == drunk_number[i] and failed_number[i] == 1: 22 aa = aa + 1 23 elif expected_drunk == drunk_number[i] and failed_number[i] == 0: 24 bb = bb + 1 25 p_aa = aa / ex_failed #x1|y x1=0,y=1 26 p_bb = bb / ex_not_failed#x1|y x1=0,y=0 27 28 aaa = 0 29 bbb = 0 30 31 for i in range(0, len(shopping_number)): 32 if expected_shopping == shopping_number[i] and failed_number[i] == 1: 33 aaa = aaa + 1 34 elif expected_shopping == shopping_number[i] and failed_number[i] == 0: 35 bbb = bbb + 1 36 p_aaa = aaa / ex_failed 37 p_bbb = bbb / ex_not_failed 38 39 a4 = 0 40 b4 = 0 41 for i in range(0, len(study_number)): 42 if expected_study == study_number[i] and failed_number[i] == 1: 43 a4 = a4 + 1 44 elif expected_study == study_number[i] and failed_number[i] == 0: 45 b4 = b4 + 1 46 p_a4 = a4 / ex_failed 47 p_b4 = b4 / ex_not_failed 48 49 # print("aa:%s , aaa=%s a4=%s" % ( aa,aaa,a4)) 50 # print("p_aa:%s , aaa=%s a4=%s" % (p_aa, p_aaa, p_a4)) 51 # print("bb:%s , bbb=%s b4=%s" % (bb, bbb, b4)) 52 # print("p_bb:%s , bbb=%s b4=%s" % (p_bb, p_bbb, p_b4)) 53 final_failed_p = p_aa * p_aaa* p_a4 * ex_failed / len(failed_number) 54 final_not_p = p_bb * p_bbb * p_b4* ex_not_failed / len(failed_number) 55 print("挂科的概率=%s"%(final_failed_p)) 56 print("不挂科的概率=%s"%(final_not_p)) 57 if final_not_p>final_not_p: 58 print("预测会挂科") 59 else: 60 print("预测不会挂科") 61 62 63 if __name__ == "__main__": 64 failed_number = [1, 0, 0, 1, 1, 0, 0, 1] 65 drunk_number = [1, 0, 1, 1, 0, 0, 0, 0] 66 shopping_number=[1, 0, 0, 0, 1, 1, 1, 0] 67 study_number = [0, 1, 1, 0, 0, 1, 0, 1] 68 69 expected_drunk = 0 70 expected_shopping = 0 71 expected_study = 1 72 #不喝酒 不逛街 学习 的挂科概率 73 print(drunk_number, study_number, shopping_number) 74 naive_bs(failed_number, drunk_number, shopping_number,study_number, 75 expected_drunk, expected_shopping,expected_study)
代码和自己做的PPT百度云链接:
链接:https://pan.baidu.com/s/1WKn9sY295Qp9JSn3It0yxg
提取码:23cd
复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V5的分享
标签:drunk,python,Naive,number,分类器,failed,ex,expected,study 来源: https://www.cnblogs.com/fudanxi/p/13922673.html