编程语言
首页 > 编程语言> > Java线程池原理分析

Java线程池原理分析

作者:互联网

1. 简介

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。

2. 线程池的继承体系

如上图,最顶层的接口 Executor 仅声明了一个方法execute。ExecutorService 接口在其父类接口基础上,声明了包含但不限于shutdown、submit、invokeAll、invokeAny 等方法。至于 ScheduledExecutorService 接口,则是声明了一些和定时任务相关的方法,比如 schedule和scheduleAtFixedRate。线程池的核心实现是在 ThreadPoolExecutor 类中,我们使用 Executors 调用newFixedThreadPool、newSingleThreadExecutor和newCachedThreadPool等方法创建线程池均是 ThreadPoolExecutor 类型。

3. 核心参数分析

核心参数的配置在我的这篇博客《线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式》中有详细介绍,也可以移步参考。

3.1 核心参数简介

线程池的核心实现即 ThreadPoolExecutor 类。该类包含了几个核心属性,这些属性在可在构造方法进行初始化。在介绍核心属性前,我们先来看看 ThreadPoolExecutor 的构造方法,如下:

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

线程池的核心参数有如上七个,各个参数意义如下:

3.2 线程创建规则

在 Java 线程池实现中,线程池所能创建的线程数量受限于 corePoolSize 和 maximumPoolSize 两个参数值。线程的创建时机则和 corePoolSize 以及 workQueue 两个参数有关。

 执行图示如下:

3.3 资源回收

考虑到系统资源是有限的,对于线程池超出 corePoolSize 数量的空闲线程应进行回收操作。进行此操作存在一个问题,即回收时机。目前的实现方式是当线程空闲时间超过 keepAliveTime 后,进行回收。除了核心线程数之外的线程可以进行回收,核心线程内的空闲线程也可以进行回收。回收的前提是allowCoreThreadTimeOut属性被设置为 true,通过public void allowCoreThreadTimeOut(boolean) 方法可以设置属性值。

3.4 排队策略

当线程数量大于等于 corePoolSize,workQueue 未满时,则缓存新任务。这里要考虑使用什么类型的容器缓存新任务,通过 JDK 文档介绍,我们可知道有3中类型的容器可供使用,分别是同步队列有界队列无界队列。对于有优先级的任务,这里还可以增加优先级队列。以上所介绍的4中类型的队列,对应的实现类如下:

3.5 拒绝策略

当线程数量大于等于 maximumPoolSize,且 workQueue 已满,则使用拒绝策略处理新任务。Java 线程池提供了4中拒绝策略实现类,AbortPolicy 是线程池实现类所使用的策略。

4. 线程池的操作

4.1 线程的创建与复用

下面是实现类中一些比较重要的成员变量:

private final BlockingQueue<Runnable> workQueue;              //任务缓存队列,用来存放等待执行的任务
private final ReentrantLock mainLock = new ReentrantLock();   //线程池的主要状态锁,对线程池状态(比如线程池大小、runState等)的改变都要使用这个锁
private final HashSet<Worker> workers = new HashSet<Worker>();  //用来存放工作集
private volatile long  keepAliveTime;    //线程存活时间   
private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线程设置存活时间
private volatile int   corePoolSize;     //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
private volatile int   maximumPoolSize;   //线程池最大能容忍的线程数
private volatile int   poolSize;       //线程池中当前的线程数
private volatile RejectedExecutionHandler handler; //任务拒绝策略
private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线程
private int largestPoolSize;   //用来记录线程池中曾经出现过的最大线程数
private long completedTaskCount;   //用来记录已经执行完毕的任务个数

在线程池的实现上,线程的创建是通过线程工厂接口ThreadFactory的实现类来完成的。默认情况下,线程池使用Executors.defaultThreadFactory()方法返回的线程工厂实现类。当然,我们也可以通过 public void setThreadFactory(ThreadFactory)方法进行动态修改。

+----ThreadPoolExecutor.Worker.java
Worker(Runnable firstTask) {
    setState(-1);
    this.firstTask = firstTask;
    // 调用线程工厂创建线程
    this.thread = getThreadFactory().newThread(this);
}

// Worker 实现了 Runnable 接口
public void run() {
    runWorker(this);
}

+----ThreadPoolExecutor.java
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock();
    boolean completedAbruptly = true;
    try {
        // 循环从任务队列中获取新任务
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 执行新任务
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 线程退出后,进行后续处理
        processWorkerExit(w, completedAbruptly);
    }
}

4.2 提交任务

通常情况下,我们可以通过线程池的submit方法提交任务。被提交的任务可能会立即执行,也可能会被缓存或者被拒绝。任务的处理流程如下图所示:

 对应代码:

+---- AbstractExecutorService.java
public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    // 创建任务
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    // 提交任务
    execute(ftask);
    return ftask;
}

+---- ThreadPoolExecutor.java
public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();

    int c = ctl.get();
    // 如果工作线程数量 < 核心线程数,则创建新线程
    if (workerCountOf(c) < corePoolSize) {
        // 添加工作者对象
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    
    // 缓存任务,如果队列已满,则 offer 方法返回 false。否则,offer 返回 true
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    
    // 添加工作者对象,并在 addWorker 方法中检测线程数是否小于最大线程数
    else if (!addWorker(command, false))
        // 线程数 >= 最大线程数,使用拒绝策略处理任务
        reject(command);
}

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
            int wc = workerCountOf(c);
            // 检测工作线程数与核心线程数或最大线程数的关系
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        // 创建工作者对象,细节参考上一节所贴代码
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                int rs = runStateOf(ctl.get());
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // 将 worker 对象添加到 workers 集合中
                    workers.add(w);
                    int s = workers.size();
                    // 更新 largestPoolSize 属性
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                // 开始执行任务
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

4.3 关闭线程池

我们可以通过shutdownshutdownNow两个方法关闭线程池。两个方法的区别在于,shutdown 会将线程池的状态设置为SHUTDOWN,同时该方法还会中断空闲线程。shutdownNow 则会将线程池状态设置为STOP,并尝试中断所有的线程。中断线程使用的是Thread.interrupt方法,未响应中断方法的任务是无法被中断的。最后,shutdownNow 方法会将未执行的任务全部返回。

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        //线程池状态设置为 SHUTDOWN
        advanceRunState(SHUTDOWN);
        //中断空闲线程
        interruptIdleWorkers();
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
}

public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        //线程池状态设置为 SHUTDOWN
        advanceRunState(STOP);
        //中断所有线程
        interruptWorkers();
        //未执行任务 用于return
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

调用 shutdown 和 shutdownNow 方法关闭线程池后,就不能再向线程池提交新任务了。对于处于关闭状态的线程池,会使用拒绝策略处理新提交的任务。

5. 线程池大小配置

本节来讨论一个比较重要的话题:如何合理配置线程池大小,仅供参考。

一般需要根据任务的类型来配置线程池大小:

当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行适当调整。

 

 

 

 

 

参考:

https://tianxiaobo.com/2018/04/17/Java-%E7%BA%BF%E7%A8%8B%E6%B1%A0%E5%8E%9F%E7%90%86%E5%88%86%E6%9E%90/#31-%E6%A0%B8%E5%BF%83%E5%8F%82%E6%95%B0%E5%88%86%E6%9E%90

https://www.cnblogs.com/dolphin0520/p/3932921.html

《Java并发编程的艺术》

 

标签:Java,mainLock,int,private,任务,线程,原理,null
来源: https://www.cnblogs.com/zjfjava/p/13908426.html