DataFrame和python中数据结构互相转换
作者:互联网
有时候DataFrame,我们不一定要保存成文件、或者入数据库,而是希望保存成其它的格式,比如字典、列表、json等等。当然,读取DataFrame也不一定非要从文件、或者数据库,根据现有的数据生成DataFrame也是可以的,那么该怎么做呢?我们来看一下
一 . DataFrame转成python中的数据格式
1 . 转成json
DataFrame转成json,可以使用df.to_json()方法
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json()) # {"name":{"0":"mashiro","1":"satori","2":"koishi","3":"nagisa"},"age":{"0":17,"1":17,"2":16,"3":21}}
我们看到虽然转化成了json,但是有些不完美,那就是它把索引也算进去了
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) # 如果不想加索引的话,那么指定index=False即可 try: print(df.to_json(index=False)) except Exception as e: print(e) # 'index=False' is only valid when 'orient' is 'split' or 'table' # 但是它报错了,说如果index=False,那么orient必须指定我split或者table
我们看一下这个orient是什么
首先orient可以有如下取值:split、records、index、columns、values、table
我们分别演示一下,看看orient取不同的值,结果会有什么变化
orient='split'
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json(orient="split")) """ { "columns":["name","age"], "index":[0,1,2,3], "data":[["mashiro",17],["satori",17],["koishi",16],["nagisa",21]] } """ print(df.to_json(orient="split", index=False)) """ { "columns":["name","age"], "data":[["mashiro",17],["satori",17],["koishi",16],["nagisa",21]] } """
我们看到会变成三个键值对,分别是列名、索引、数据
orient='records'
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json(orient="records")) """ [{"name":"mashiro","age":17}, {"name":"satori","age":17}, {"name":"koishi","age":16}, {"name":"nagisa","age":21}] """
这种格式的数据是比较常用的,相当于列名和每一行数据组合成一个字典,然后存在一个列表里面。并且我们看到生成json默认跟索引没啥关系,所以不需要、也不可以加index=False
orient='index'
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json(orient="index")) """ { "0":{"name":"mashiro","age":17}, "1":{"name":"satori","age":17}, "2":{"name":"koishi","age":16}, "3":{"name":"nagisa","age":21} } """
类似于records,只不过这里把字典作为value放在了外层字典里,其中key为对应的索引。当然这里同样不可以加index=False
orient='columns'
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json(orient="columns")) """ {"name":{"0":"mashiro","1":"satori","2":"koishi","3":"nagisa"},"age":{"0":17,"1":17,"2":16,"3":21}} """
我们看到这个和不指定orient得到结果是一样的,其实不指定的话orient默认是columns
orient=values
import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) print(df.to_json(orient="values")) """ [["mashiro",17],["satori",17],["koishi",16],["nagisa",21]] """ # 我们看到当orient指定为values,会只获取数据 # 另外这个方式类似于to_numpy print(df.to_numpy()) """ [['mashiro' 17] ['satori' 17] ['koishi' 16] ['nagisa' 21]] """ orient=table import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) # 以数据库二维表的形式返回 print(df.to_json(orient="table")) """ { "schema": { "fields": [{"name": "index", "type": "integer"}, {"name": "name", "type": "string"}, {"name": "age", "type": "integer"}], "primaryKey": ["index"], "pandas_version": "0.20.0" }, "data": [{"index": 0, "name": "mashiro", "age": 17}, {"index": 1, "name": "satori", "age": 17}, {"index": 2, "name": "koishi", "age": 16}, {"index": 3, "name": "nagisa", "age": 21}] } """ print(df.to_json(orient="table", index=False)) """ { "schema": { "fields": [{"name": "name", "type": "string"}, {"name": "age", "type": "integer"}], "pandas_version": "0.20.0" }, "data": [{"name": "mashiro", "age": 17}, {"name": "satori", "age": 17}, {"name": "koishi", "age": 16}, {"name": "nagisa", "age": 21}] } """
2 . 转成dict
DataFrame也可以转成字典,转换成字典里面也有一个orient参数,里面有一部分和to_json是类似的。因为json这个数据结构本身就借鉴了python中的字典,是的你没有看错,json这种数据结构参考了python中的字典。
to_dict中的orient可以有如下取值:dict、list、series、split、records、index,默认是dict
orient='dict'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) pprint(df.to_dict(orient="dict")) """ {'age': {0: 17, 1: 17, 2: 16, 3: 21}, 'name': {0: 'mashiro', 1: 'satori', 2: 'koishi', 3: 'nagisa'}} """
orient='list'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) pprint(df.to_dict(orient="list")) """ {'age': [17, 17, 16, 21], 'name': ['mashiro', 'satori', 'koishi', 'nagisa']} """
orient='series'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) # 这种结构真的不常用,就是一个key对应一个series pprint(df.to_dict(orient="series")) """ {'age': 0 17 1 17 2 16 3 21 Name: age, dtype: int64, 'name': 0 mashiro 1 satori 2 koishi 3 nagisa Name: name, dtype: object} """
orient='split'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) pprint(df.to_dict(orient="split")) """ {'columns': ['name', 'age'], 'data': [['mashiro', 17], ['satori', 17], ['koishi', 16], ['nagisa', 21]], 'index': [0, 1, 2, 3]} """
orient='records'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) pprint(df.to_dict(orient="records")) """ [{'age': 17, 'name': 'mashiro'}, {'age': 17, 'name': 'satori'}, {'age': 16, 'name': 'koishi'}, {'age': 21, 'name': 'nagisa'}] """
orient='index'
from pprint import pprint import pandas as pd df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"], "age": [17, 17, 16, 21]}) pprint(df.to_dict(orient="index")) """ {0: {'age': 17, 'name': 'mashiro'}, 1: {'age': 17, 'name': 'satori'}, 2: {'age': 16, 'name': 'koishi'}, 3: {'age': 21, 'name': 'nagisa'}} """
二 . python中的数据格式转成DataFrame
1 . 字典转成DataFrame
import pandas as pd data = {0: {'age': 17, 'name': 'mashiro'}, 1: {'age': 17, 'name': 'satori'}, 2: {'age': 16, 'name': 'koishi'}, 3: {'age': 21, 'name': 'nagisa'}} df = pd.DataFrame.from_dict(data) # 显然不是我们期待的格式 print(df) """ 0 1 2 3 age 17 17 16 21 name mashiro satori koishi nagisa """ df = pd.DataFrame.from_dict(data, orient="index") print(df) """ age name 0 17 mashiro 1 17 satori 2 16 koishi 3 21 nagisa """
所以df.to_dict和pd.DataFrame.from_json实现的是相反的功能,但是from_dict中的orient参数只有两种选择,要么是index,要么是columns,默认是columns
from_records
from_records是专门针对外层是列表的数据
import pandas as pd data = [{'age': 17, 'name': 'mashiro'}, {'age': 17, 'name': 'satori'}, {'age': 16, 'name': 'koishi'}, {'age': 21, 'name': 'nagisa'}] df = pd.DataFrame.from_records(data) print(df) """ age name 0 17 mashiro 1 17 satori 2 16 koishi 3 21 nagisa """
其实这种数据就是to_dict(orient="records")生成的
标签:name,17,python,age,DataFrame,df,数据结构,orient,21 来源: https://www.cnblogs.com/zmc940317/p/13603108.html