编程语言
首页 > 编程语言> > 杭电多校第六场 1006 A Very Easy Graph Problem(最小生成树) + Krusal算法的简介

杭电多校第六场 1006 A Very Easy Graph Problem(最小生成树) + Krusal算法的简介

作者:互联网

 

题解:

当时最初我想的是俩个for循环,每个点都跑一次dijstra,答案当然超时

看了题解后发现忽略了第 i 条边的长度是 2^i 这个重要信息提示, 这个的意思是u -> v 只要能通过前 i-1 条边到达,就绝对不会走第 i 条边,因为(2^1 + 2^2 + ... + 2^(i-1) < 2^i,所以俩个点的最短距离,就是最小生成树中俩个点的距离

所以这个题变成了一个最小生成树的题,并且使用Kruskal算法建立,利用并查集维护一下.(对于Kruskal算法,在本文的最后会附上简介和代码)

然后本题给的 n 个顶点都有对应的值,(0,1),把点分为0点,或者1点,题目中的那个式子就是计算所有1点到0点的距离

现在有了最小生成树,如何来计算这个式子呢?

首先,我们把目光聚集到边上来,式子求的是距离,也就是很多个边的和,当然有些边肯定会重复加很多次,所以我们得计算出经过最短生成树中每条边的次数

我们随便找一个边,它的俩端顶点一个是u, 一个是v,什么时候会经过这条边呢,就是 u 及 u的子树的1点去 v 及v 的子树的0点时会经过v,同理v的也一样

所以我们可以用一个dp[N][2]数组来记录每个顶点及其子树的0点和1点的个数。 (OK,到这里,我们就可以看代码了, 代码的注释很详细哦,当然,不知道Kruskal算法的可以再往底部拉一下,先了解Kruskal算法)

/* 
重点:求1所有点到0点的个数
 */
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;

typedef long long ll;
typedef pair<ll, ll> P; //first是最短距离,second是顶点的编号
const ll N = 1e5 + 5;
const ll mod = 1e9+7;

ll s[N], f[N], n, m; //s存该点的val  f并查集数组
vector<P> G[N]; //存边i->first, 距离second
ll dp[N][2]; //存i点子树0,1的个数
ll one, zero; //存总生成树的0,1个数

inline ll read() {
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}

ll find(ll x) {
    return f[x] == x ? x : f[x] = find(f[x]);
}

void init() {
    one = zero = 0;
    for (int i = 0; i <= n; i++) {
        G[i].clear(); //清理边
        f[i] = i;
        dp[i][0] = dp[i][1] = 0;
    }
}


void dfs(ll u, ll father, ll &res) {
    dp[u][s[u]]++; //自身结点的val++统计进去
    for (ll i = 0; i < (ll)G[u].size(); i++) {
        ll v = G[u][i].first;
        if (v == father) continue; //不遍历父节点
        dfs(v, u, res);
        //遍历结束后从底层向上更新信息
        dp[u][1] += dp[v][1];
        dp[u][0] += dp[v][0];
    }

    for (int i = 0; i < (ll)G[u].size(); i++) {
        ll v = G[u][i].first;
        if (v == father) continue;
        /* 
        计算经过u-v这条边的贡献值
        这条边的子树就是以v为根的树
        所以该点的贡献值就是
        res += (v点及其子树内0点的个数*(总1点个数 - v点及其子树1点的个数))*cost(u-v)
        res += (v点及其子树内1点的个数*(总0点个数 - v点及其子树0点的个数))*cost(u-v)
         */
        res = (res+dp[v][0]*(one-dp[v][1])%mod*G[u][i].second)%mod;
        res = (res+dp[v][1]*(zero-dp[v][0])%mod*G[u][i].second)%mod;
    }
}

int main() {
    ll t = read();
    while (t--) {
        n = read(), m = read();
        init();
        for (ll i = 1; i <= n; i++) {
            cin >> s[i];
            if (s[i])   one++;
            else   zero++;
        }

        ll cost = 1;
        for (ll i = 1; i <= m; i++) {
            ll u = read(), v = read();
            cost = 2 * cost % mod;
            if (find(u) == find(v)) continue;
            //建边
            G[u].push_back({v, cost});
            G[v].push_back({u, cost});
            f[find(u)] = find(v);
        }

        //从1开始dfs
        ll res = 0;
        dfs(1, -1, res);
        cout << res << "\n";
    }
} 

Kruskal算法

Kruskal算法总是维护无向图的最小生成森林。最初,你可以认为该森林没有边,每个节点各自构成一颗仅包含一个节点的树,然后从已知的边(假设m条)中寻找权值最小的边加入其中,并且这条边的俩个端点属于生成森林中俩颗不同的树(不连通)。连通情况使用并查集维护。

  具体过程

 

 1 //最小生成树(Kruskal算法)
 2 /* 
 3 1.建立并查集,每个点各自构成一个集合
 4 2.把所有边按照权值大小从小到大排列,依次扫描每条边
 5 3.若x,y属于同一集合(连通),则忽略这条边,继续扫描下一条边
 6 4.否则,合并x,y所在的集合,并把z累加到答案中
 7 5.所有便扫描完成后,第4步中处理过的边就构成了最小生成树
 8  */
 9 #include<iostream>
10 #include<algorithm>
11 using namespace std;
12 
13 struct rec{int x, y, z;}edge[500010];
14 int fa[100010], n, m, ans; //fa并查集数组
15 bool operator < (rec a, rec b) {
16     return a.z < b.z;
17 }
18 
19 int find(int x) {
20     return fa[x] == x ? x : fa[x] = find(fa[x]);
21 }
22 
23 int main() {
24     cin >> n >> m;
25     for (int i = 1; i <= m; i++) {
26         cin >> edge[i].x >> edge[i].y >> edge[i].z;
27     }
28     sort(edge+1, edge+m+1); //按照边权排序
29     for (int i = 1; i <= n; i++)    fa[i] = i; //并查集初始化
30     
31     for (int i = 1; i <= m; i++) {
32         int x = find(edge[i].x);
33         int y = find(edge[i].y);
34         if (x == y) continue;
35         else {
36             fa[x] = y;
37             ans += edge[i].z;
38         }
39     }
40     cout << ans << "\n";
41 } 

 

 

标签:杭电多校,第六场,Krusal,int,ll,生成,算法,edge,Kruskal
来源: https://www.cnblogs.com/mr-wei977955490/p/13454697.html