图像搜索-BOF-Python
作者:互联网
图像搜索
Bag of Feature (BOF)算法
- BOF的本质是提出一种图像的特征表示方法。按照BOF算法的思想,首先我们要找到图像中的关键词,而且这些关键词必须具备较高的区分度。实际过程中,通常会采用SIFT特征。
- 有了特征之后,我们会将这些特征通过聚类算法得出很多聚类中心。这些聚类中心通常具有较高的代表性,比如,对于人脸来说,虽然不同人的眼睛、鼻子等特征都不尽相同,但它们往往具有共性,而这些聚类中心就代表了这类共性。我们将这些聚类中心组合在一起,形成一部字典。
- 对于图像中的每个「SIFT」特征,我们能够在字典中找到最相似的聚类中心,统计这些聚类中心出现的次数,可以得到一个向量表示(有些文章称之为直方图),如本文开篇的图片所示。这些向量就是所谓的Bag。这样,对于不同类别的图片,这个向量应该具有较大的区分度,基于此,我们可以训练出一些分类模型,并用其对图片进行分类。
BOF 算法过程
- 创建词汇
- 创建图像索引
- 在数据库中搜索图像
TF-IDF
对于直方图向量,我们引入 TF-IDF 权值
我们需要对每一个词给一个权重。而且这个权重必须满足以下两个条件:
- 一个词对主题预测能力越强,权重越大;
- 停止词权重为 0;
加权 BOF
TF-IDF 是通过增加权重的方法,凸显出重要的关键信息。同样的,在图像检索中,为了更精确地度量相似性,我们也在原来直方图向量的基础上,为向量的每一项增加权重。按照上面信息检索的方法,我们需要给字典里的每个向量(visual word)设置权重。
建立一个图像集
创建词汇
为创建视觉单词词汇,首先需要提取特征描述子,使用SIFT特征描述子,得到每幅图像提取的描述子,并将每幅图像的描述子保存在一个文件中:
# -*- coding: utf-8 -*- import pickle from PCV.imagesearch import vocabulary from PCV.tools.imtools import get_imlist from PCV.localdescriptors import sift #获取图像列表 imlist = get_imlist('E:/test_pic/BOF/') nbr_images = len(imlist) #获取特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] #提取文件夹下图像的sift特征 for i in range(nbr_images): sift.process_image(imlist[i], featlist[i]) #生成词汇 voc = vocabulary.Vocabulary('ukbenchtest') voc.train(featlist, 1000, 10) #保存词汇 # saving vocabulary with open('E:/test_pic/BOF/vocabulary.pkl', 'wb') as f: pickle.dump(voc, f) print ('vocabulary is:', voc.name, voc.nbr_words)
同时生成数据文件vocabulary.pkl
添加图像并创建图像索引
# -*- coding: utf-8 -*- import pickle from PCV.imagesearch import imagesearch from PCV.localdescriptors import sift from sqlite3 import dbapi2 as sqlite from PCV.tools.imtools import get_imlist #获取图像列表 imlist = get_imlist('E:/test_pic/BOF/') nbr_images = len(imlist) #获取特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] # load vocabulary #载入词汇 with open('E:/test_pic/BOF/vocabulary.pkl', 'rb') as f: voc = pickle.load(f) #创建索引 indx = imagesearch.Indexer('testImaAdd.db',voc) indx.create_tables() # go through all images, project features on vocabulary and insert #遍历所有的图像,并将它们的特征投影到词汇上 for i in range(nbr_images)[:500]: locs,descr = sift.read_features_from_file(featlist[i]) indx.add_to_index(imlist[i],descr) # commit to database #提交到数据库 indx.db_commit() con = sqlite.connect('testImaAdd.db') print (con.execute('select count (filename) from imlist').fetchone()) print (con.execute('select * from imlist').fetchone())
此处会报错:
如果你不是装了所有的包,(我是安装的Anaconda,所以可以直接运行),就需要点进imagesearch中修改一下代码:
将其内部所有代码替换成为:
from numpy import * import pickle import sqlite3 from functools import cmp_to_key import operator class Indexer(object): def __init__(self, db, voc): """ Initialize with the name of the database and a vocabulary object. """ self.con = sqlite3.connect(db) self.voc = voc def __del__(self): self.con.close() def db_commit(self): self.con.commit() def get_id(self, imname): """ Get an entry id and add if not present. """ cur = self.con.execute( "select rowid from imlist where filename='%s'" % imname) res = cur.fetchone() if res == None: cur = self.con.execute( "insert into imlist(filename) values ('%s')" % imname) return cur.lastrowid else: return res[0] def is_indexed(self, imname): """ Returns True if imname has been indexed. """ im = self.con.execute("select rowid from imlist where filename='%s'" % imname).fetchone() return im != None def add_to_index(self, imname, descr): """ Take an image with feature descriptors, project on vocabulary and add to database. """ if self.is_indexed(imname): return print('indexing', imname) # get the imid imid = self.get_id(imname) # get the words imwords = self.voc.project(descr) nbr_words = imwords.shape[0] # link each word to image for i in range(nbr_words): word = imwords[i] # wordid is the word number itself self.con.execute("insert into imwords(imid,wordid,vocname) values (?,?,?)", (imid, word, self.voc.name)) # store word histogram for image # use pickle to encode NumPy arrays as strings self.con.execute("insert into imhistograms(imid,histogram,vocname) values (?,?,?)", (imid, pickle.dumps(imwords), self.voc.name)) def create_tables(self): """ Create the database tables. """ self.con.execute('create table imlist(filename)') self.con.execute('create table imwords(imid,wordid,vocname)') self.con.execute('create table imhistograms(imid,histogram,vocname)') self.con.execute('create index im_idx on imlist(filename)') self.con.execute('create index wordid_idx on imwords(wordid)') self.con.execute('create index imid_idx on imwords(imid)') self.con.execute('create index imidhist_idx on imhistograms(imid)') self.db_commit() class Searcher(object): def __init__(self, db, voc): """ Initialize with the name of the database. """ self.con = sqlite3.connect(db) self.voc = voc def __del__(self): self.con.close() def get_imhistogram(self, imname): """ Return the word histogram for an image. """ im_id = self.con.execute( "select rowid from imlist where filename='%s'" % imname).fetchone() s = self.con.execute( "select histogram from imhistograms where rowid='%d'" % im_id).fetchone() # use pickle to decode NumPy arrays from string return pickle.loads(s[0]) def candidates_from_word(self, imword): """ Get list of images containing imword. """ im_ids = self.con.execute( "select distinct imid from imwords where wordid=%d" % imword).fetchall() return [i[0] for i in im_ids] def candidates_from_histogram(self, imwords): """ Get list of images with similar words. """ # get the word ids words = imwords.nonzero()[0] # find candidates candidates = [] for word in words: c = self.candidates_from_word(word) candidates += c # take all unique words and reverse sort on occurrence tmp = [(w, candidates.count(w)) for w in set(candidates)] tmp.sort(key=cmp_to_key(lambda x, y: operator.gt(x[1], y[1]))) tmp.reverse() # return sorted list, best matches first return [w[0] for w in tmp] def query(self, imname): """ Find a list of matching images for imname. """ h = self.get_imhistogram(imname) candidates = self.candidates_from_histogram(h) matchscores = [] for imid in candidates: # get the name cand_name = self.con.execute( "select filename from imlist where rowid=%d" % imid).fetchone() cand_h = self.get_imhistogram(cand_name) cand_dist = sqrt(sum(self.voc.idf * (h - cand_h) ** 2)) matchscores.append((cand_dist, imid)) # return a sorted list of distances and database ids matchscores.sort() return matchscores def get_filename(self, imid): """ Return the filename for an image id. """ s = self.con.execute( "select filename from imlist where rowid='%d'" % imid).fetchone() return s[0] def tf_idf_dist(voc, v1, v2): v1 /= sum(v1) v2 /= sum(v2) return sqrt(sum(voc.idf * (v1 - v2) ** 2)) def compute_ukbench_score(src, imlist): """ Returns the average number of correct images on the top four results of queries. """ nbr_images = len(imlist) pos = zeros((nbr_images, 4)) # get first four results for each image for i in range(nbr_images): pos[i] = [w[1] - 1 for w in src.query(imlist[i])[:4]] # compute score and return average score = array([(pos[i] // 4) == (i // 4) for i in range(nbr_images)]) * 1.0 return sum(score) / (nbr_images) # import PIL and pylab for plotting from PIL import Image from pylab import * def plot_results(src, res): """ Show images in result list 'res'. """ figure() nbr_results = len(res) for i in range(nbr_results): imname = src.get_filename(res[i]) subplot(1, nbr_results, i + 1) imshow(array(Image.open(imname))) axis('off') show()
运行上面代码后,会在根目录生成建立的索引数据库testImaAdd.db
获取候选图像
# -*- coding: utf-8 -*- import pickle from PCV.imagesearch import imagesearch from PCV.localdescriptors import sift from sqlite3 import dbapi2 as sqlite from PCV.tools.imtools import get_imlist #获取图像列表 imlist = get_imlist('E:/test_pic/BOF/') nbr_images = len(imlist) #获取特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] #载入词汇 f = open('E:/test_pic/BOF/vocabulary.pkl', 'rb') voc = pickle.load(f) f.close() src = imagesearch.Searcher('testImaAdd.db',voc) locs,descr = sift.read_features_from_file(featlist[0]) iw = voc.project(descr) print ('ask using a histogram...') print (src.candidates_from_histogram(iw)[:5]) src = imagesearch.Searcher('testImaAdd.db',voc) print ('try a query...') print(src.query(imlist[0])[:5]) nbr_results = 5 res = [w[1] for w in src.query(imlist[0])[:nbr_results]] imagesearch.plot_results(src,res)
输入的图像:
运行结果:
输入图像:
运行结果:
总结
- 可以看出,有两张图是跟搜索图片的相似度很高的,可能是因为原图中含有文字的原因,匹配出来的有些图片并不相近,但是从像素和棱廓来看,其实是有些相似度的
- 不选去有文字的图片尽心检索应该会使结果更好一些。数据集中也最好不要出现文字图片,我的数据集是表情包,所以难免会有文字在其中。
- 在图像特征比较明显,或者数据集中图片相似的很多,则图像的匹配效果越好
- BOF算法还有一个明显的不足,就是它完全没有考虑到特征之间的位置关系,而位置信息对于人理解图片来说,作用是很明显的。
- 而且在提取特征时不需要相关的 label 进行学习,因此是一种弱监督的学习方法。
标签:voc,Python,nbr,self,图像,import,imlist,BOF,con 来源: https://www.cnblogs.com/bokeyuancj/p/12876406.html