python - 求解基础空间解析几何
作者:互联网
未完成,有空再继续完善。。
代码:
import numpy as np def point_to_line_distance(a, b, c, x0, y0): return np.abs(a * x0 + b * y0 + c) / np.sqrt(a * a + b * b) def point_to_plane_distance(a, b, c, d, x0, y0, z0): return np.abs(a * x0 + b * y0 + c * z0 + d) / np.sqrt(a * a + b * b + c * c) def point_slope_to_intercept(x0, y0, slope): return y0 - (-1. / slope) * x0 def parse_expression(exp: str = ''): return '' def point_is_in_area(x0, y0, trig_points): for x, y in trig_points: if x0 > x: pass def three_points_compute_area(points): point1 = points[0] point2 = points[1] point3 = points[2] vertor1 = point2 - point1 vertor2 = point3 - point1 normal_vector = np.cross(vertor1, vertor2) return 1. / 2. * np.sqrt(normal_vector.dot(normal_vector)) def three_dimension_points_output_equation(points): point1 = points[0] point2 = points[1] point3 = points[2] vertor1 = point2 - point1 vertor2 = point3 - point1 normal_vector = np.cross(vertor1, vertor2) A = normal_vector[0] B = normal_vector[1] C = normal_vector[2] D = A * point1[0] + B * point1[1] + C * point1[2] return str(A) + 'x + ' + str(B) + 'y + ' + str(C) + 'z + ' + str(D) + ' = 0' if __name__ == '__main__': points = np.array( [ [2, -1, 4], [-1, 3, -2], [0, 2, 3] ]) print(three_points_compute_area(points))
标签:vector,求解,python,解析几何,point1,points,np,y0,x0 来源: https://www.cnblogs.com/darkchii/p/12667848.html