编程语言
首页 > 编程语言> > mac使用python识别图形验证码

mac使用python识别图形验证码

作者:互联网

前言

首先这篇文章,主要是研究图形验证码,后期会不定时拓展内容。

在网上查了很多版本的图形验证码识别,目前看到最多的两个模块是pytesseract和tesserocr,但是因为我这里安装tesserocr的时候各种出错,所以最终我锁定了使用pytesseract。
那么接下来,就记录下安装以及使用过程。这里的系统环境是mac os 10.14.

安装tesserocr

brew install tesserocr

因为pytesseract依赖于tesserocr所以首先需要先安装tesserocr这个软件。接下来就是安装python相关的包

安装python所需要的包

pip3 install pytesseract
pip3 install pillow 

安装pytesseract是ocr识别图片上的字,因为验证码的识别难度高低不同,所以在这个过程中需要对图片做一定的处理,这就需要使用处理图片的模块pillow。

一个简单的demo

import pytesseract
from PIL import Image
import os


def binarizing(img, threshold):
    """传入image对象进行灰度、二值处理"""
    pixdata = img.load()
    w, h = img.size
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
        for x in range(w):
            if pixdata[x, y] < threshold:
                pixdata[x, y] = 0
            else:
                pixdata[x, y] = 255
    return img


_temp = os.path.dirname(__file__)
file_path = os.path.join(_temp, 'code2.jpg')
print("file_path", file_path)
image = Image.open(file_path)
image = image.convert('L')
threshold = 157
table = []
# 接下来是二值化处理
# 遍历所有像素,大于阈值的为黑色,threshold是阀值
image = binarizing(image, threshold)
result = pytesseract.image_to_string(image)
print(result)

示例中的图片

需要用到的图像知识:

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”也就是我们说的灰度化的一个操作。除此之外,还有其他的模式,不过我们在处理验证码的时候是将其转为灰度模式,所以就不强调其他的模式了。

模式“L”

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

通过灰度化之后的图片变为

灰度化我们还要对其进行二值化操作

二值化操作

二值化故名思议,就是整个图像所有像素只有两个值可以选择,一个是黑(灰度为0),一个是白(灰度为255)。二值化的好处就是将图片上的有用信息和无用信息区分开来,比如二值化之后的验证码图片,验证码像素为黑色,背景和干扰点为白色,这样后面对验证码像素处理的时候就会很方便。对于简单的图形验证码,到这里基本上就够了,但是如果有干扰线,还要进行除干扰线的操作。
对应的代码为

def binarizing(img, threshold):
    """传入image对象进行灰度、二值处理"""
    pixdata = img.load()
    w, h = img.size
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
        for x in range(w):
            if pixdata[x, y] < threshold:
                pixdata[x, y] = 0 #小于阀值设为0,0是黑色
            else:
                pixdata[x, y] = 255 0 #大于阀值设为255,255是白色
    return img

此时的图片效果为

可以看到图片变得锐化了很多,这个时候再去识别就比较好识别了。

去干扰线

常见的4邻域、8邻域算法。所谓的X邻域算法,可以参考手机九宫格输入法,按键5为要判断的像素点,4邻域就是判断上下左右,8邻域就是判断周围8个像素点。如果这4或8个点中255的个数大于某个阈值则判断这个点为噪音,阈值可以根据实际情况修改。

参考资料

https://www.jb51.net/article/141428.htm
https://blog.csdn.net/icamera0/article/details/50843172

标签:pixdata,img,python,image,验证码,mac,灰度,threshold
来源: https://www.cnblogs.com/c-x-a/p/12168010.html