最短距离算法Python
作者:互联网
我想创建一个简单的广度优先搜索算法,该算法返回最短路径.
演员信息字典将演员映射到演员出现的电影列表:
actor_info = { "act1" : ["movieC", "movieA"], "act2" : ["movieA", "movieB"],
"act3" :["movieA", "movieB"], "act4" : ["movieC", "movieD"],
"act5" : ["movieD", "movieB"], "act6" : ["movieE"],
"act7" : ["movieG", "movieE"], "act8" : ["movieD", "movieF"],
"KevinBacon" : ["movieF"], "act10" : ["movieG"], "act11" : ["movieG"] }
与此相反的是,将电影映射到其中出现的演员列表:
movie_info = {'movieB': ['act2', 'act3', 'act5'], 'movieC': ['act1', 'act4'],
'movieA': ['act1', 'act2', 'act3'], 'movieF': ['KevinBacon', 'act8'],
'movieG': ['act7', 'act10', 'act11'], 'movieD': ['act8', 'act4', 'act5'],
'movieE': ['act6', 'act7']}
所以打个电话
shortest_dictance("act1", "Kevin Bacon", actor_info, movie_info)
我应该得到3,因为act1与act4一起出现在movieC中,而与Kevin8的电影F中出现了Act8一起出现在movieD中.所以最短距离是3.
到目前为止,我有这个:
def shotest_distance(actA, actB, actor_info, movie_info):
'''Return the number of movies required to connect actA and actB.
If theres no connection return -1.'''
# So we keep 2 lists of actors:
# 1.The actors that we have already investigated.
# 2.The actors that need to be investigated because we have found a
# connection beginning at actA. This list must be
# ordered, since we want to investigate actors in the order we
# discover them.
# -- Each time we put an actor in this list, we also store
# her distance from actA.
investigated = []
to_investigate = [actA]
distance = 0
while actB not in to_investigate and to_investigate!= []:
for actor in to_investigate:
to_investigated.remove(actA)
investigated.append(act)
for movie in actor_info[actor]:
for co_star in movie_info[movie]:
if co_star not in (investigated and to_investigate):
to_investigate.append(co_star)
....
....
return d
我找不到适合的方法来跟踪每次代码迭代发现的距离.同样,该代码在时间上似乎效率很低.
解决方法:
首先从中创建一个图以连接所有节点,然后运行shortest_path代码(可能会有一个高效的图库来代替下面提到的功能来做到这一点,尽管这很优雅),然后找出所有最短路径中的电影名称.
for i in movie_info:
actor_info[i] = movie_info[i]
def find_shortest_path(graph, start, end, path=[]):
path = path + [start]
if start == end:
return path
if not start in graph:
return None
shortest = None
for node in graph[start]:
if node not in path:
newpath = find_shortest_path(graph, node, end, path)
if newpath:
if not shortest or len(newpath) < len(shortest):
shortest = newpath
return shortest
L = find_shortest_path(actor_info, 'act1', 'act2')
print len([i for i in L if i in movie_info])
find_shortest_path来源:http://www.python.org/doc/essays/graphs/
标签:breadth-first-search,python 来源: https://codeday.me/bug/20191202/2085233.html