编程语言
首页 > 编程语言> > 使此C数组处理代码更像python(甚至numpy)

使此C数组处理代码更像python(甚至numpy)

作者:互联网

我正在努力使自己的Python达到惊人的列表处理能力(最终达到numpy).我正在将我编写的一些C代码转换为python.

我有一个文本数据文件,其中第一行是标题,然后每个奇数行是我的输入数据,每个偶数行是我的输出数据.所有数据空间分开.我很奇怪,我设法使用嵌套列表推导将所有数据读入列表.很棒的东西.

with open('data.txt', 'r') as f:
    # get all lines as a list of strings
    lines = list(f)

    # convert header row to list of ints and get info
    header = map(int, lines[0].split(' '))
    num_samples = header[0]
    input_dim = header[1]
    output_dim = header[2]
    del header    

    # bad ass list comprehensions 
    inputs = [[float(x) for x in l.split()] for l in lines[1::2]]
    outputs = [[float(x) for x in l.split()] for l in lines[2::2]]
    del x, l, lines

然后,我想生成一个新列表,其中每个元素都是对应的输入输出对的函数.我不知道如何使用任何特定于python的优化来做到这一点.这是C风格的python:

# calculate position
pos_list = [];
pos_y = 0
for i in range(num_samples):
    pantilt = outputs[i];
    target = inputs[i];

    if(pantilt[0] > 90):
        pantilt[0] -=180
        pantilt[1] *= -1
    elif pantilt[0] < -90:
        pantilt[0] += 180
        pantilt[1] *= -1

    tan_pan = math.tan(math.radians(pantilt[0]))
    tan_tilt = math.tan(math.radians(pantilt[1]))

    pos = [0, pos_y, 0]
    pos[2] = tan_tilt * (target[1] - pos[1]) / math.sqrt(tan_pan * tan_pan + 1)
    pos[0] = pos[2] * tan_pan
    pos[0] += target[0]
    pos[2] += target[2]
    pos_list.append(pos)
del pantilt, target, tan_pan, tan_tilt, pos, pos_y

我试图通过理解或地图来做到这一点,但不知道如何:

>为pos_list数组的每个元素从两个不同的列表(输入和输出)中绘制
>将算法的主体放在理解中.它必须是一个单独的函数还是为此使用lambda的一种时髦方式?
>甚至可以完全不使用循环来执行此操作,只需将其粘贴在numpy中并对整个对象进行矢量化处理?

解决方法:

一种使用boolean-indexing/mask的矢量化方法-

import numpy as np

def mask_vectorized(inputs,outputs,pos_y):
    # Create a copy of outputs array for editing purposes
    pantilt_2d = outputs[:,:2].copy()

    # Get mask correspindig to IF conditional statements in original code
    mask_col0_lt = pantilt_2d[:,0]<-90
    mask_col0_gt = pantilt_2d[:,0]>90

    # Edit the first column as per the statements in original code
    pantilt_2d[:,0][mask_col0_gt] -= 180
    pantilt_2d[:,0][mask_col0_lt] += 180

    # Edit the second column as per the statements in original code
    pantilt_2d[ mask_col0_lt | mask_col0_gt,1] *= -1

    # Get vectorized tan_pan and tan_tilt 
    tan_pan_tilt = np.tan(np.radians(pantilt_2d))

    # Vectorized calculation for: "tan_tilt * (target[1] .." from original code 
    V = (tan_pan_tilt[:,1]*(inputs[:,1] - pos_y))/np.sqrt((tan_pan_tilt[:,0]**2)+1)

    # Setup output numpy array
    pos_array_vectorized = np.empty((num_samples,3))

    # Put in values into columns of output array
    pos_array_vectorized[:,0] = inputs[:,0] + tan_pan_tilt[:,0]*V
    pos_array_vectorized[:,1] = pos_y
    pos_array_vectorized[:,2] = inputs[:,2] + V

    # Convert to list, if so desired for the final output
    # (keeping as numpy array could boost up the performance further)
    return pos_array_vectorized.tolist()

运行时测试

In [415]: # Parameters and setup input arrays
     ...: num_samples = 1000
     ...: outputs = np.random.randint(-180,180,(num_samples,5))
     ...: inputs = np.random.rand(num_samples,6)
     ...: pos_y = 3.4
     ...: 

In [416]: %timeit original(inputs,outputs,pos_y)
100 loops, best of 3: 2.44 ms per loop

In [417]: %timeit mask_vectorized(inputs,outputs,pos_y)
10000 loops, best of 3: 181 µs per loop

标签:vectorization,c-3,arrays,python,numpy
来源: https://codeday.me/bug/20191120/2042375.html