使用Python解析非结构化文本文件
作者:互联网
我有一个文本文件,其中的一些片段如下所示:
Page 1 of 515
Closing Report for Company Name LLC
222 N 9th Street, #100 & 200, Las Vegas, NV, 89101
File number: Jackie Grant Status: Fell Thru Primary closing party: Seller
Acceptance: 01/01/2001 Closing date: 11/11/2011 Property type: Commercial Lease
MLS number: Sale price: $200,000 Commission: $1,500.00
Notes: 08/15/2000 02:30PM by Roger Lodge This property is a Commercial Lease handled by etc..
Seller: Company Name LLC
Company name: Company Name LLC
Address: 222 N 9th Street, #100 & 200, Las Vegas, NV, 89101
Home: Pager:
Business: Fax:
Mobile: Email:
Buyer: Tomlinson, Ladainian
Address: 222 N 9th Street, #100 & 200, Las Vegas, NV, 89101
Home: Pager:
Business: 555-555-5555 Fax:
Mobile: Email:
Lessee Agent: Blank, Arthur
Company name: Sprockets Inc.
Address: 5001 Old Man Dr, North Las Vegas, NV, 89002
Home: (575) 222-3455 Pager:
Business: Fax: 999-9990
Mobile: (702) 600-3492 Email: sprockets@yoohoo.com
Leasing Agent: Van Uytnyck, Chameleon
Company name: Company Name LLC
Address:
Home: Pager:
Business: Fax: 909-222-2223
Mobile: 595-595-5959 Email:
(should be 2 spaces here.. this is not in normal text file)
Printed on Friday, June 12, 2015
Account owner: Roger Goodell
Page 2 of 515
Report for Adrian (Allday) Peterson
242 N 9th Street, #100 & 200
File number: Soap Status: Closed/Paid Primary closing party: Buyer
Acceptance: 01/10/2010 Closing date: 01/10/2010 Property type: RRR
MLS number: Sale price: $299,000 Commission: 33.00%
Seller: SOS, Bank
Address: 242 N 9th Street, #100 & 200
Home: Pager:
Business: Fax:
Mobile: Email:
Buyer: Sabel, Aaron
Address:
Home: Pager:
Business: Fax:
Mobile: Email: sia@yoohoo.com
Escrow Co: Schneider, Patty
Company name: National Football League
Address: 242 N 9th Street, #100 & 200
Home: Pager:
Business: 800-2009 Fax: 800-1100
Mobile: Email:
Buyers Agent: Munchak, Mike
Company name: Commission Group
Address:
Home: Pager:
Business: Fax:
Mobile: 483374-3892 Email: donation@yoohoo.net
Listing Agent: Ricci, Christina
Company name: Other Guys
Address:
Home: Pager:
Business: Fax:
Mobile: 888-333-3333 Email: general.adama@cylon.net
这是我的代码:
import re
file = open('file-path.txt','r')
# if there are more than two consecutive blank lines, then we start a new Entry
entries = []
curr = []
prev_blank = False
for line in file:
line = line.rstrip('\n').strip()
if (line == ''):
if prev_blank == True:
# end of the entry, create append the entry
if(len(curr) > 0):
entries.append(curr)
print curr
curr = []
prev_blank = False
else:
prev_blank = True
else:
prev_blank = False
# we need to parse the line
line_list = line.split()
str = ''
start = False
for item in line_list:
if re.match('[a-zA-Z\s]+:.*',item):
if len(str) > 0:
curr.append(str)
str = item
start = True
elif start == True:
str = str + ' ' + item
这是输出:
['number: Jackie Grant', 'Status: Fell Thru Primary closing', 'Acceptance: 01/01/2001 Closing', 'date: 11/11/2011 Property', 'number: Sale', 'price: $200,000', 'Home:', 'Business:', 'Mobile:', 'Home:', 'Business: 555-555-5555', 'Mobile:', 'Home: (575) 222-3455', 'Business:', 'Mobile: (702) 600-3492', 'Home:', 'Business:', 'Mobile: 595-595-5959']
我的问题如下:
>首先,应该有2条记录作为输出,而我只输出一条.
>在文本的最上方,我的脚本很难知道上一个值在哪里结束,而新值开始了:“状态:通过”应为一个值,“主要交易方:”,“买方”
接受:“ 01/10/2010”,“结束日期:2010年10月10日”,“属性类型:RRR”,“ MLS编号:”,“销售价格:$299,000”,“佣金:33.00%”.
>正确解析后,我将需要再次解析以将键与值分开(即“结束日期”:01/10/2010),最好是在字典列表中.
除了使用正则表达式来挑选键,然后抓取随后的文本片段,我想不出更好的方法.
完成后,我想要一个带键的csv标头行,可以将其导入带有read_csv的熊猫.我已经花了几个小时了.
解决方法:
(这不是完整的答案,但是评论太久了).
>字段名称可以有空格(例如MLS号)
>每行上都会出现几个字段(例如,首页:传呼机:)
>备注字段中有时间,其中带有:
这意味着您无法采用正则表达式来识别字段名称.不可能知道“ MLS”是先前数据值还是后续字段名的一部分.
某些“首页:传呼机”行是指卖方,有些则指买方,承租人代理或租赁代理.这意味着我下面采用的逐行处理方法也不起作用.
这是我正在处理的代码,它针对您的测试数据运行,但由于上述原因,输出不正确.这里是我所采用方法的参考:
replaces = [
('Closing Report for', 'Report_for:')
,('Report for', 'Report_for:')
,('File number', 'File_number')
,('Primary closing party', 'Primary_closing_party')
,('MLS number', 'MLS_number')
,('Sale Price', 'Sale_Price')
,('Account owner', 'Account_owner')
# ...
# etc.
]
def fix_linemash(data):
# splits many fields on one line into several lines
results = []
mini_collection = []
for token in data.split(' '):
if ':' not in token:
mini_collection.append(token)
else:
results.append(' '.join(mini_collection))
mini_collection = [token]
return [line for line in results if line]
def process_record(data):
# takes a collection of lines
# fixes them, and builds a record dict
record = {}
for old, new in replaces:
data = data.replace(old, new)
for line in fix_linemash(data):
print line
name, value = line.split(':', 1)
record[name.strip()] = value.strip()
return record
records = []
collection = []
blank_flag = False
for line in open('d:/lol.txt'):
# Read through the file collecting lines and
# looking for double blank lines
# every pair of blank lines, process the stored ones and reset
line = line.strip()
if line.startswith('Page '): continue
if line.startswith('Printed on '): continue
if not line and blank_flag: # record finished
records.append( process_record(' '.join(collection)) )
blank_flag = False
collection = []
elif not line: # maybe end of record?
blank_flag = True
else: # false alarm, record continues
blank_flag = False
collection.append(line)
for record in records:
print record
我现在认为对数据进行一些预处理整理步骤会是一个更好的主意:
>删除“第n页,共n页”和“在…上打印”行,以及类似内容
>识别所有有效的字段名称,然后分解合并的行,这意味着每一行只有一个字段,字段从行的开头开始.
>运行并仅处理卖方/买方/代理商区块,用标识前缀替换字段名,例如电子邮件:->卖方电子邮件:.
然后编写一个记录解析器,这应该很容易-检查两条空行,在第一个冒号处分割行,将左位用作字段名称,将右位用作值.根据需要存储(nb.字典键是无序的).
标签:pyparsing,csv,python,parsing,regex 来源: https://codeday.me/bug/20191120/2041979.html