Python零基础入门到爬虫再到数据分析,这些你都是要学会的
作者:互联网
前言
文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取
http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef
1.必须知道的两组Python基础术语
A.变量和赋值
Python可以直接定义变量名字并进行赋值的,例如我们写出a = 4时,Python解释器干了两件事情:
-
在内存中创建了一个值为4的整型数据
-
在内存中创建了一个名为a的变量,并把它指向4
用一张示意图表示Python变量和赋值的重点:
例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:
a=4 #整型数据 b=2 #整型数据 c=“4” #字符串数据 d=“2” #字符串数据 print(“a+b结果为”,a+b)#两个整数相加,结果是6 print(“c+d结果为”,c+d)#两个文本合并,结果是文本“42” #以下为运行结果 >>>a+b结果为 6 >>>c+d结果为 42
请阅读代码块里的代码和注释,你会发现Python是及其易读易懂的。
B.数据类型
在初级的数据分析过程中,有三种数据类型是很常见的:
-
列表list(Python内置)
-
字典dic(Python内置)
-
DataFrame(工具包pandas下的数据类型,需要import pandas才能调用)
它们分别是这么写的:
列表(list):
#列表 liebiao=[1,2.223,-3,'刘强东','章泽天','周杰伦','昆凌',['微博','B站','抖音']]
list是一种有序的集合,里面的元素可以是之前提到的任何一种数据格式和数据类型(整型、浮点、列表……),并可以随时指定顺序添加其中的元素,其形式是:
1 #ist是一个可变的有序表,所以,可以往list中追加元素到末尾: 2 liebiao.append('瘦') 3 print(liebiao) 4 #结果1 5 >>>[1, 2.223, -3, '刘强东', '章泽天', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦'] 6 7 #也可以把元素插入到指定的位置,比如索引号为5的位置,插入“胖”这个元素: 8 liebiao.insert(5, '胖') 9 print(liebiao) 10 #结果2 11 >>>[1, 2.223, -3, '刘强东', '章泽天', '胖', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']
字典(dict):
#字典 zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}
字典使用键-值(key-value)存储,无序,具有极快的查找速度。以上面的字典为例,想要快速知道周杰伦的年龄,就可以这么写:
zidian['周杰伦'] >>>'40'
dict内部存放的顺序和key放入的顺序是没有关系的,也就是说,"章泽天"并非是在"刘强东"的后面。
DataFrame:
DataFrame可以简单理解为Excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,以上面的字典为例,转化为DataFrame是这样的:
1 import pandas as pd 2 3 df=pd.DataFrame.from_dict(zidian,orient='index',columns=['age'])#注意DataFrame的D和F是大写 4 df=df.reset_index().rename(columns={'index':'name'})#给姓名加上字段名
和excel一样,DataFrame的任何一列或任何一行都可以单独选出进行分析。
以上三种数据类型是python数据分析中用的最多的类型,基础语法到此结束,接下来就可以着手写一些函数计算数据了。
从Python爬虫学循环函数
掌握了以上基本语法概念,我们就足以开始学习一些有趣的函数。我们以爬虫中绕不开的遍历url为例,讲讲大家最难理解的循环函数for的用法:
A.for函数
for函数是一个常见的循环函数,先从简单代码理解for函数的用途:
1 zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'} 2 for key in zidian: 3 print(key) 4 5 >>> 6 刘强东 7 章泽天 8 周杰伦 9 昆凌
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不是每次都一样。默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时#迭代key和value,可以用for k, v in d.items()
可以看到,字典里的人名被一一打印出来了。for 函数的作用就是用于遍历数据。掌握for函数,可以说是真正入门了Python函数。
B.爬虫和循环
for函数在书写Python爬虫中经常被应用,因为爬虫经常需要遍历每一个网页,以获取信息,所以构建完整而正确的网页链接十分关键。以某票房数据网为例,他的网站信息长这样:
该网站的周票房json数据地址可以通过抓包工具找到,网址为http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=20190114
仔细观察,该网站不同日期的票房数据网址(url)只有后面的日期在变化,访问不同的网址(url)就可以看到不同日期下的票房数据:
我们要做的是,遍历每一个日期下的网址,用Python代码把数据爬下来。此时for函数就派上用场了,使用它我们可以快速生成多个符合条件的网址:
1 import pandas as pd 2 3 url_df = pd.DataFrame({'urls':['http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=' for i in range(5)],'date' :pd.date_range(20190114,freq = 'W-MON',periods = 5)}) 4 5 ''' 6 将网址相同的部分生成5次,并利用pandas的时间序列功能生成5个星期一对应的日期。 7 其中用到了第一部分提供的多个数据类型: 8 range(5)属于列表, 9 'urls':[]属于字典, 10 pd.dataframe属于dataframe 11 ''' 12 url_df['urls'] = url_df['urls'] + url_df['date'].astype('str')
为了方便理解,我给大家画了一个for函数的遍历过程示意图:
3.Python怎么实现数据分析?
A.Python分析
在做好数据采集和导入后,选择字段进行初步分析可以说是数据分析的必经之路。在Dataframe数据格式的帮助下,这个步骤变得很简单。
比如当我们想看单周票房第一的排名分别都是哪些电影时,可以使用pandas工具库中常用的方法,筛选出周票房为第一名的所有数据,并保留相同电影中周票房最高的数据进行分析整理:
1 import pandas as pd 2 data = pd.read_csv('中国票房数据爬取测试20071-20192.csv',engine='python') 3 data[data['平均上座人数']>20]['电影名'] 4 #计算周票房第一随时间变化的结果,导入数据,并选择平均上座人数在20以上的电影为有效数据 5 6 dataTop1_week = data[data['排名']==1][['电影名','周票房']] 7 #取出周票房排名为第一名的所有数据,并保留“电影名”和“周票房”两列数据 8 9 dataTop1_week = dataTop1_week.groupby('电影名').max()['周票房'].reset_index() 10 #用“电影名”来分组数据,相同电影连续霸榜的选择最大的周票房保留,其他数据删除 11 12 dataTop1_week = dataTop1_week.sort_values(by='周票房',ascending=False) 13 #将数据按照“周票房”进行降序排序 14 15 dataTop1_week.index = dataTop1_week['电影名'] 16 del dataTop1_week['电影名'] 17 #整理index列,使之变为电影名,并删掉原来的电影名列 18 19 dataTop1_week 20 #查看数据
9行代码,我们完成了Excel里的透视表、拖动、排序等鼠标点击动作。最后再用Python中的可视化包matplotlib,快速出图:
B.函数化分析
以上是一个简单的统计分析过程。接下来就讲讲Excel基础功能不能做的事——自定义函数提效。观察数据可以发现,数据中记录了周票房和总票房的排名,那么刚刚计算了周票房排名的代码,还能不能复用做一张总票房分析呢?
当然可以,只要使用def函数和刚刚写好的代码建立自定义函数,并说明函数规则即可:
1 def pypic(pf): 2 #定义一个pypic函数,变量是pf 3 dataTop1_sum = data[['电影名',pf]] 4 #取出源数据中,列名为“电影名”和pf两列数据 5 6 dataTop1_sum = dataTop1_sum.groupby('电影名').max()[pf].reset_index() 7 #用“电影名”来分组数据,相同电影连续霸榜的选择最大的pf票房保留,其他数据删除 8 9 dataTop1_sum = dataTop1_sum.sort_values(by=pf,ascending=False) 10 #将数据按照pf进行降序排序 11 12 dataTop1_sum.index = dataTop1_sum['电影名'] 13 del dataTop1_sum['电影名'] 14 #整理index列,使之变为电影名,并删掉原来的电影名列 15 16 dataTop1_sum[:20].iloc[::-1].plot.barh(figsize = (6,10),color = 'orange') 17 name=pf+'top20分析' 18 plt.title(name) 19 #根据函数变量名出图
学会函数的构建,一个数据分析师才算真正能够告别Excel的鼠标点击模式,迈入高效分析的领域。
标签:数据分析,函数,Python,电影,爬虫,dataTop1,数据,票房 来源: https://www.cnblogs.com/qun821460695/p/11842631.html