编程语言
首页 > 编程语言> > Python零基础入门到爬虫再到数据分析,这些你都是要学会的

Python零基础入门到爬虫再到数据分析,这些你都是要学会的

作者:互联网

前言

文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

1.必须知道的两组Python基础术语

A.变量和赋值

Python可以直接定义变量名字并进行赋值的,例如我们写出a = 4时,Python解释器干了两件事情:

用一张示意图表示Python变量和赋值的重点:

在这里插入图片描述

例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:

a=4 #整型数据
b=2 #整型数据
c=“4” #字符串数据
d=“2” #字符串数据
​
print(“a+b结果为”,a+b)#两个整数相加,结果是6
print(“c+d结果为”,c+d)#两个文本合并,结果是文本“42”
​
#以下为运行结果
>>>a+b结果为 6
>>>c+d结果为 42

 

请阅读代码块里的代码和注释,你会发现Python是及其易读易懂的。

B.数据类型

在初级的数据分析过程中,有三种数据类型是很常见的:

它们分别是这么写的:

列表(list):

#列表
liebiao=[1,2.223,-3,'刘强东','章泽天','周杰伦','昆凌',['微博','B站','抖音']]

 

list是一种有序的集合,里面的元素可以是之前提到的任何一种数据格式和数据类型(整型、浮点、列表……),并可以随时指定顺序添加其中的元素,其形式是:

 1 #ist是一个可变的有序表,所以,可以往list中追加元素到末尾:
 2 liebiao.append('瘦')
 3 print(liebiao)
 4 #结果1
 5 >>>[1, 2.223, -3, '刘强东', '章泽天', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']
 6 ​
 7 #也可以把元素插入到指定的位置,比如索引号为5的位置,插入“胖”这个元素:
 8 liebiao.insert(5, '胖')
 9 print(liebiao)
10 #结果2
11 >>>[1, 2.223, -3, '刘强东', '章泽天', '胖', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']

 

字典(dict):

#字典
zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}

 

字典使用键-值(key-value)存储,无序,具有极快的查找速度。以上面的字典为例,想要快速知道周杰伦的年龄,就可以这么写:

zidian['周杰伦']
>>>'40'

 

dict内部存放的顺序和key放入的顺序是没有关系的,也就是说,"章泽天"并非是在"刘强东"的后面。

DataFrame:

DataFrame可以简单理解为Excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,以上面的字典为例,转化为DataFrame是这样的:

1 import pandas as pd
2 ​
3 df=pd.DataFrame.from_dict(zidian,orient='index',columns=['age'])#注意DataFrame的D和F是大写
4 df=df.reset_index().rename(columns={'index':'name'})#给姓名加上字段名

 

在这里插入图片描述

和excel一样,DataFrame的任何一列或任何一行都可以单独选出进行分析。

以上三种数据类型是python数据分析中用的最多的类型,基础语法到此结束,接下来就可以着手写一些函数计算数据了。

从Python爬虫学循环函数

掌握了以上基本语法概念,我们就足以开始学习一些有趣的函数。我们以爬虫中绕不开的遍历url为例,讲讲大家最难理解的循环函数for的用法:

A.for函数

for函数是一个常见的循环函数,先从简单代码理解for函数的用途:

1 zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}
2 for key in zidian:
3         print(key)
4 ​
5 >>>
6 刘强东
7 章泽天
8 周杰伦
9 昆凌

 

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不是每次都一样。默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时#迭代key和value,可以用for k, v in d.items()

可以看到,字典里的人名被一一打印出来了。for 函数的作用就是用于遍历数据。掌握for函数,可以说是真正入门了Python函数。

B.爬虫和循环

for函数在书写Python爬虫中经常被应用,因为爬虫经常需要遍历每一个网页,以获取信息,所以构建完整而正确的网页链接十分关键。以某票房数据网为例,他的网站信息长这样: 在这里插入图片描述 在这里插入图片描述

该网站的周票房json数据地址可以通过抓包工具找到,网址为http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=20190114

仔细观察,该网站不同日期的票房数据网址(url)只有后面的日期在变化,访问不同的网址(url)就可以看到不同日期下的票房数据: 在这里插入图片描述

我们要做的是,遍历每一个日期下的网址,用Python代码把数据爬下来。此时for函数就派上用场了,使用它我们可以快速生成多个符合条件的网址:

 1 import pandas as pd
 2 
 3 url_df = pd.DataFrame({'urls':['http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=' for i in range(5)],'date' :pd.date_range(20190114,freq = 'W-MON',periods = 5)})
 4 
 5 '''
 6 将网址相同的部分生成5次,并利用pandas的时间序列功能生成5个星期一对应的日期。
 7 其中用到了第一部分提供的多个数据类型:
 8 range(5)属于列表,
 9 'urls':[]属于字典,
10 pd.dataframe属于dataframe
11 '''
12 url_df['urls'] = url_df['urls'] + url_df['date'].astype('str')

 

在这里插入图片描述

为了方便理解,我给大家画了一个for函数的遍历过程示意图:

在这里插入图片描述

3.Python怎么实现数据分析?

A.Python分析

在做好数据采集和导入后,选择字段进行初步分析可以说是数据分析的必经之路。在Dataframe数据格式的帮助下,这个步骤变得很简单。

比如当我们想看单周票房第一的排名分别都是哪些电影时,可以使用pandas工具库中常用的方法,筛选出周票房为第一名的所有数据,并保留相同电影中周票房最高的数据进行分析整理:

 1 import pandas as pd
 2 data = pd.read_csv('中国票房数据爬取测试20071-20192.csv',engine='python')
 3 data[data['平均上座人数']>20]['电影名']
 4 #计算周票房第一随时间变化的结果,导入数据,并选择平均上座人数在20以上的电影为有效数据
 5 
 6 dataTop1_week = data[data['排名']==1][['电影名','周票房']]
 7 #取出周票房排名为第一名的所有数据,并保留“电影名”和“周票房”两列数据
 8 
 9 dataTop1_week = dataTop1_week.groupby('电影名').max()['周票房'].reset_index()
10 #用“电影名”来分组数据,相同电影连续霸榜的选择最大的周票房保留,其他数据删除
11 
12 dataTop1_week = dataTop1_week.sort_values(by='周票房',ascending=False)
13 #将数据按照“周票房”进行降序排序
14 
15 dataTop1_week.index = dataTop1_week['电影名']
16 del dataTop1_week['电影名']
17 #整理index列,使之变为电影名,并删掉原来的电影名列
18 
19 dataTop1_week
20 #查看数据

 

在这里插入图片描述

9行代码,我们完成了Excel里的透视表、拖动、排序等鼠标点击动作。最后再用Python中的可视化包matplotlib,快速出图:

在这里插入图片描述

B.函数化分析

以上是一个简单的统计分析过程。接下来就讲讲Excel基础功能不能做的事——自定义函数提效。观察数据可以发现,数据中记录了周票房和总票房的排名,那么刚刚计算了周票房排名的代码,还能不能复用做一张总票房分析呢? 在这里插入图片描述

当然可以,只要使用def函数和刚刚写好的代码建立自定义函数,并说明函数规则即可:

 1 def pypic(pf):
 2     #定义一个pypic函数,变量是pf
 3     dataTop1_sum = data[['电影名',pf]]
 4     #取出源数据中,列名为“电影名”和pf两列数据
 5 ​
 6     dataTop1_sum = dataTop1_sum.groupby('电影名').max()[pf].reset_index()
 7     #用“电影名”来分组数据,相同电影连续霸榜的选择最大的pf票房保留,其他数据删除
 8 ​
 9     dataTop1_sum = dataTop1_sum.sort_values(by=pf,ascending=False)
10     #将数据按照pf进行降序排序
11 ​
12     dataTop1_sum.index = dataTop1_sum['电影名']
13     del dataTop1_sum['电影名']
14     #整理index列,使之变为电影名,并删掉原来的电影名列
15 ​
16     dataTop1_sum[:20].iloc[::-1].plot.barh(figsize = (6,10),color = 'orange')
17     name=pf+'top20分析'
18     plt.title(name)
19     #根据函数变量名出图

 

在这里插入图片描述

学会函数的构建,一个数据分析师才算真正能够告别Excel的鼠标点击模式,迈入高效分析的领域。

标签:数据分析,函数,Python,电影,爬虫,dataTop1,数据,票房
来源: https://www.cnblogs.com/qun821460695/p/11842631.html