NLTK中的Stanford NER无法正确标记多个句子-Python
作者:互联网
我有一个函数,可以使用Stanford NER在给定的文本正文中返回命名实体.
def get_named_entities(text):
load_ner_files()
print text[:100] # to show that the text is fine
text_split = text.split()
print text_split # to show the split is working fine
result = "named entities = ", st.tag(text_split)
return result
我正在使用报纸Python包从URL加载文本.
def get_page_text():
url = "https://aeon.co/essays/elon-musk-puts-his-case-for-a-multi-planet-civilisation"
page = Article(url)
page.download()
page.parse()
return unicodedata.normalize('NFKD', page.text).encode('ascii', 'ignore')
但是,当我运行该函数时,将得到以下输出:
['Fuck', 'Earth!', 'Elon', 'Musk', 'said', 'to', 'me,', 'laughing.', 'Who', 'cares', 'about', 'Earth?'......... (continued)
named entities = [('Fuck', 'O'), ('Earth', 'O'), ('!', 'O')]
所以我的问题是,为什么只有前三个单词被标记?
解决方法:
假设已经正确设置了NLTK v3.2,请参见
> Stanford Parser and NLTK
> https://gist.github.com/alvations/e1df0ba227e542955a8a
> https://gist.github.com/alvations/0ed8641d7d2e1941b9f9
TL; DR:
pip install -U nltk
要么
conda update nltk
设置NLTK和Stanford Tools之后(请记住设置环境变量):
import time
import urllib.request
from itertools import chain
from bs4 import BeautifulSoup
from nltk import word_tokenize, sent_tokenize
from nltk.tag import StanfordNERTagger
class Article:
def __init__(self, url, encoding='utf8'):
self.url = url
self.encoding='utf8'
self.text = self.fetch_url_text()
self.process_text()
def fetch_url_text(self):
response = urllib.request.urlopen(self.url)
self.data = response.read().decode(self.encoding)
self.bsoup = BeautifulSoup(self.data, 'html.parser')
return '\n'.join([paragraph.text for paragraph
in self.bsoup.find_all('p')])
def process_text(self):
self.paragraphs = [sent_tokenize(p.strip())
for p in self.text.split('\n') if p]
_sents = list(chain(*self.paragraphs))
self.sents = [word_tokenize(sent) for sent in _sents]
self.words = list(chain(*self.sents))
url = 'https://aeon.co/essays/elon-musk-puts-his-case-for-a-multi-planet-civilisation'
a1 = Article(url)
three_sentences = a1.sents[20:23]
st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
# Tag multiple sentences at one go.
start = time.time()
tagged_sents = st.tag_sents(three_sentences)
print ("Tagging took:", time.time() - start)
print (tagged_sents, end="\n\n")
for sent in tagged_sents:
print (sent)
print()
# (Much slower) Tagging sentences one at the time and
# Stanford NER is refired every time.
start = time.time()
tagged_sents = [st.tag(sent) for sent in three_sentences]
print ("Tagging took:", time.time() - start)
for sent in tagged_sents:
print (sent)
print()
[OUT]:
Tagging took: 2.537247657775879
[[('Musk', 'PERSON'), ('was', 'O'), ('laughing', 'O'), ('because', 'O'), ('he', 'O'), ('was', 'O'), ('joking', 'O'), (':', 'O'), ('he', 'O'), ('cares', 'O'), ('a', 'O'), ('great', 'O'), ('deal', 'O'), ('about', 'O'), ('Earth', 'LOCATION'), ('.', 'O')], [('When', 'O'), ('he', 'O'), ('is', 'O'), ('not', 'O'), ('here', 'O'), ('at', 'O'), ('SpaceX', 'ORGANIZATION'), (',', 'O'), ('he', 'O'), ('is', 'O'), ('running', 'O'), ('an', 'O'), ('electric', 'O'), ('car', 'O'), ('company', 'O'), ('.', 'O')], [('But', 'O'), ('this', 'O'), ('is', 'O'), ('his', 'O'), ('manner', 'O'), ('.', 'O')]]
[('Musk', 'PERSON'), ('was', 'O'), ('laughing', 'O'), ('because', 'O'), ('he', 'O'), ('was', 'O'), ('joking', 'O'), (':', 'O'), ('he', 'O'), ('cares', 'O'), ('a', 'O'), ('great', 'O'), ('deal', 'O'), ('about', 'O'), ('Earth', 'LOCATION'), ('.', 'O')]
[('When', 'O'), ('he', 'O'), ('is', 'O'), ('not', 'O'), ('here', 'O'), ('at', 'O'), ('SpaceX', 'ORGANIZATION'), (',', 'O'), ('he', 'O'), ('is', 'O'), ('running', 'O'), ('an', 'O'), ('electric', 'O'), ('car', 'O'), ('company', 'O'), ('.', 'O')]
[('But', 'O'), ('this', 'O'), ('is', 'O'), ('his', 'O'), ('manner', 'O'), ('.', 'O')]
Tagging took: 7.375355243682861
[('Musk', 'PERSON'), ('was', 'O'), ('laughing', 'O'), ('because', 'O'), ('he', 'O'), ('was', 'O'), ('joking', 'O'), (':', 'O'), ('he', 'O'), ('cares', 'O'), ('a', 'O'), ('great', 'O'), ('deal', 'O'), ('about', 'O'), ('Earth', 'LOCATION'), ('.', 'O')]
[('When', 'O'), ('he', 'O'), ('is', 'O'), ('not', 'O'), ('here', 'O'), ('at', 'O'), ('SpaceX', 'ORGANIZATION'), (',', 'O'), ('he', 'O'), ('is', 'O'), ('running', 'O'), ('an', 'O'), ('electric', 'O'), ('car', 'O'), ('company', 'O'), ('.', 'O')]
[('But', 'O'), ('this', 'O'), ('is', 'O'), ('his', 'O'), ('manner', 'O'), ('.', 'O')]
标签:stanford-nlp,named-entity-recognition,python,nlp,nltk 来源: https://codeday.me/bug/20191009/1879866.html