python – 合并非重叠的数组块
作者:互联网
我使用此功能将(512×512)2维阵列划分为2×2块.
skimage.util.view_as_blocks (arr_in, block_shape)
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> B = view_as_blocks(A, block_shape=(2, 2))
>>> B[0, 0]
array([[0, 1],
[4, 5]])
>>> B[0, 1]
array([[2, 3],
[6, 7]])
现在我需要在操作之后将相同的块放到原始位置,但是我在skimage中看不到任何功能.
合并非重叠数组的最佳方法是什么?
谢谢!
解决方法:
使用转置/交换轴交换第二和第三轴,然后重新整形以合并最后两个轴 –
B.transpose(0,2,1,3).reshape(-1,B.shape[1]*B.shape[3])
B.swapaxes(1,2).reshape(-1,B.shape[1]*B.shape[3])
样品运行 –
In [41]: A
Out[41]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
In [42]: B = view_as_blocks(A, block_shape=(2, 2))
In [43]: B
Out[43]:
array([[[[ 0, 1],
[ 4, 5]],
[[ 2, 3],
[ 6, 7]]],
[[[ 8, 9],
[12, 13]],
[[10, 11],
[14, 15]]]])
In [44]: B.transpose(0,2,1,3).reshape(-1,B.shape[1]*B.shape[3])
Out[44]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
标签:scikit-image,python,numpy 来源: https://codeday.me/bug/20191006/1862256.html