蚁群算法的优化计算
作者:互联网
%%清空环境变量 clear all clc %%导入数据 load citys_data.mat %%计算城市间相互距离 n = size(citys,1); D = zeros(n,n); %计算城市两两之间的距离 for i =1:n for j =1:n if i~=j D(i,j)=sqrt(sum( ( citys(i,:) - citys(j,:) ).^2 )); else D(i,j)= 1e-4; end end end %%初始化参数 m = 31;%蚂蚁 alpha =1;%信息素重要程度因子 beta = 5;%启发函数重要程度因子 rho = 0.1;%信息素挥发因子 Q=1;%常系数 Eta = 1./D;%启发函数 Tau = ones(n,n);%信息素矩阵 Table = zeros(m,n); %路径记录表 iter =1; iter_max = 200; %最大迭代次数 route_best = zeros(iter_max,n);%各代最佳路径 length_best = zeros(iter_max,1);%各代最佳路径的长度 length_ave = zeros(iter_max,1);%各代最佳路径的平均长度 %%迭代寻找最优路径 while iter<=iter_max %随机产生各个蚂蚁的起点城市 start = zeros(m,1); for i =1:m temp = randperm(n);%随机生成了一个路径 start(i) = temp(1);%生成路径的起点 end Table(:,1)=start; %构建解空间 city_index = 1:n; %逐个蚂蚁路径选择 for i =1:m %逐个城市选择 for j= 2:n tabu = Table(i,1:(j-1));%已访问的城市集合(禁忌表) allow_index = ~ismember(city_index,tabu); allow = city_index(allow_index);%待访问的城市集合 P = allow; %计算城市转移概率 for k = 1:length(allow) P(k) = Tau(tabu(end),allow(k))^alpha*Eta(tabu(end),allow(k))^beta; end P = P/sum(P); %使用轮盘赌方法选择下一个访问城市 Pc =cumsum(P); target_index = find(Pc>=rand); target = allow(target_index(1)); Table(i,j) = target; end end %计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j= 1:(n-1) Length(i)=Length(i)+D(Route(j),Route(j+1)); end Length(i) = Length(i)+D(Route(n),Route(1)); end %计算最短路径与平均距离 if iter ==1 [min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); else [min_Length,min_index] = min(Length); Length_best(iter) = min(Length_best(iter-1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length Route_best(iter,:) = Table(min_index,:); else Route_best(iter,:)=Route_best((iter-1),:); end end %更新信息素 Delta_Tau = zeros(n,n); for i=1:m %逐个城市计算 for j=1:(n-1) Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1))+Q/Length(i); end Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1))+Q/Length(i); end Tau = (1-rho)*Tau+Delta_Tau; %迭代次数加1,清空历史记录 iter = iter+1; Table = zeros(m,n); end %% 结果显示 [shortest_length,index] = min(Length_best); shortest_Route = Route_best(index,:); disp(['最短距离:' num2str(shortest_length)]); disp(['最短路径:' num2str([shortest_Route shortest_Route(1)])]); %% 绘图 figure(1) plot([citys(shortest_Route,1);citys(shortest_Route(1),1)],... [ citys(shortest_Route,2);citys(shortest_Route(1),2) ],'o-') grid on for i = 1:size(citys,1) text(citys(i,1),citys(i,2),[' ' num2str(i)]); end text(citys(shortest_Route(1),1),citys(shortest_Route(1),2),'起点') text(citys(shortest_Route(end),1),citys(shortest_Route(end),2),'起点') xlabel('城市位置横坐标') ylabel('城市位置纵坐标') title(['蚁群算法优化路径(最短距离:' num2str(shortest_length) ')']) figure(2) plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r') legend('最短距离','平均距离')
内容参考 matlab 智能计算30个案例分析
标签:end,蚁群,Route,Length,iter,算法,citys,优化,shortest 来源: https://www.cnblogs.com/wupenghao95/p/11472576.html