c# – 维基百科A *寻路算法需要花费大量时间
作者:互联网
我已经在C#中成功实现了A * pathfinding,但它很慢,我不明白为什么.我甚至尝试不对openNodes列表进行排序,但它仍然是相同的.
地图是80×80,有10-11个节点.
我从Wikipedia那里拿了伪代码
这是我的实施:
public static List<PGNode> Pathfind(PGMap mMap, PGNode mStart, PGNode mEnd)
{
mMap.ClearNodes();
mMap.GetTile(mStart.X, mStart.Y).Value = 0;
mMap.GetTile(mEnd.X, mEnd.Y).Value = 0;
List<PGNode> openNodes = new List<PGNode>();
List<PGNode> closedNodes = new List<PGNode>();
List<PGNode> solutionNodes = new List<PGNode>();
mStart.G = 0;
mStart.H = GetManhattanHeuristic(mStart, mEnd);
solutionNodes.Add(mStart);
solutionNodes.Add(mEnd);
openNodes.Add(mStart); // 1) Add the starting square (or node) to the open list.
while (openNodes.Count > 0) // 2) Repeat the following:
{
openNodes.Sort((p1, p2) => p1.F.CompareTo(p2.F));
PGNode current = openNodes[0]; // a) We refer to this as the current square.)
if (current == mEnd)
{
while (current != null)
{
solutionNodes.Add(current);
current = current.Parent;
}
return solutionNodes;
}
openNodes.Remove(current);
closedNodes.Add(current); // b) Switch it to the closed list.
List<PGNode> neighborNodes = current.GetNeighborNodes();
double cost = 0;
bool isCostBetter = false;
for (int i = 0; i < neighborNodes.Count; i++)
{
PGNode neighbor = neighborNodes[i];
cost = current.G + 10;
isCostBetter = false;
if (neighbor.Passable == false || closedNodes.Contains(neighbor))
continue; // If it is not walkable or if it is on the closed list, ignore it.
if (openNodes.Contains(neighbor) == false)
{
openNodes.Add(neighbor); // If it isn’t on the open list, add it to the open list.
isCostBetter = true;
}
else if (cost < neighbor.G)
{
isCostBetter = true;
}
if (isCostBetter)
{
neighbor.Parent = current; // Make the current square the parent of this square.
neighbor.G = cost;
neighbor.H = GetManhattanHeuristic(current, neighbor);
}
}
}
return null;
}
这是我正在使用的启发式:
private static double GetManhattanHeuristic(PGNode mStart, PGNode mEnd)
{
return Math.Abs(mStart.X - mEnd.X) + Math.Abs(mStart.Y - mEnd.Y);
}
我究竟做错了什么?这是一整天我一直在看同样的代码.
解决方法:
首先,使用分析器.用工具告诉你什么是慢的;什么是慢的往往令人惊讶.并使用调试器.制作一个包含五个节点的地图,并在尝试查找路径时逐步执行代码的每一行.什么意外发生了?如果是这样,请弄清楚发生了什么.
其次,抛开你的性能问题,我认为你也有正确性问题.你能解释一下为什么你认为曼哈顿距离是一个合理的启发式算法吗?
(对于那些不熟悉度量标准的人来说,“曼哈顿距离”或“出租车距离”是指如果你住在一个网格上的城市,你必须经过的两点之间的距离.在东北方向14英里处,您必须向北行驶10英里,然后向东行驶10英里,总共行驶20英里.)
A *算法要求其正确性,启发式总是低估了在两点之间行进所需的实际距离.如果图中有任何“对角线快捷方式”街道,那么曼哈顿距离会过高估计这些路径上的距离,因此算法不一定会找到最短路径.
为什么你不使用欧氏距离作为你的启发式?
您是否尝试使用“始终为零”作为启发式算法?这保证是低估的. (这样做可以实现Dijkstra的算法.)
第三,你似乎在这个实现中进行了大量的排序.当然你可能正在使用优先级队列;这比分拣便宜很多.
第四,我在我的博客上实现了C#3中的A *,欢迎您使用;没有明示或暗示的保证,使用风险自负.
http://blogs.msdn.com/b/ericlippert/archive/tags/astar/
我的代码很简单;我的实现中的算法如下所示:
var closed = new HashSet<Node>();
var queue = new PriorityQueue<double, Path<Node>>();
queue.Enqueue(0, new Path<Node>(start));
while (!queue.IsEmpty)
{
var path = queue.Dequeue();
if (closed.Contains(path.LastStep)) continue;
if (path.LastStep.Equals(destination)) return path;
closed.Add(path.LastStep);
foreach(Node n in path.LastStep.Neighbours)
{
double d = distance(path.LastStep, n);
var newPath = path.AddStep(n, d);
queue.Enqueue(newPath.TotalCost + estimate(n), newPath);
}
}
我们的想法是保持路径的优先级队列;也就是说,路径队列始终能够以最小距离告诉您到目前为止的路径.然后我们检查一下我们是否已经到达目的地;如果是这样,我们就完成了.如果没有,那么我们根据他们(低于)到目标的估计距离排队一堆新路径.
第五,维基百科中的伪代码可以得到改进.事实上,我的实际代码在很多方面比伪代码更容易遵循,这表明伪代码中可能存在太多细节.
标签:c,optimization,net,a-star,path-finding 来源: https://codeday.me/bug/20190712/1438303.html