朴树贝叶斯分类算法
作者:互联网
对于本例中,朴素贝叶斯公式:p(A|w)=p(w|A).p(A)/p(w),其中w为待测试文本,由每一个单词wi构成,w=w0,w1,w2,...,wn,所以,要想知道测试本次是否属于侮辱性,则求
侮辱性概率:p(1|w)=p(w0,w1,w2,...,wn|1).p(1)/p(w0,w1,w2,...,wn)
非侮辱性概率:p(0|w)=p(w0,w1,w2,...,wn|0).p(0)/p(w0,w1,w2,...,wn)
因为假设w中各单词相互独立,又可以将上式写成
p(1|w)=p(w0|1)p(w1|1)...p(wn|1).p(1)/p(w0,w1,w2,...,wn),再对分子取对数p'(1|w)=∑logp(wi|1)+logp(1)
因为p(1|w)和p(0|w)分母相同,且只需要比较p(1|w)和p(0|w)大小,故求分子的值即可。
代码如下:
# -*- coding: UTF-8 -*- import numpy as np #创建实验样本 def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是 return postingList,classVec #对于每个样本,对齐按照词汇表进行向量化 def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: returnVec[vocabList.index(word)] = 1 ''' 这个地方觉得可以优化下,如果一个词出现多次,也只给它统计一次 +=1?? returnVec[vocabList.index(word)] += 1,createVocabList()中也得修改 ['love', 'my', 'dalmation', 'stupid', 'stupid'] 按照此式得出是侮辱性,按照上式是非侮辱 ''' return returnVec #生成词汇集 def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet|set(document) return list(vocabSet) #朴素贝叶斯分类器训练函数,求条件概率 def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = np.ones(numWords)#防止词汇表中的单词没出现,概率则为0,分子变成0了,统一变成1 p1Num = np.ones(numWords) p1Denom = 2.0 #分母也由0.0变成2.0 p0Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = np.log(p1Num/p1Denom)#对每个条件概率p(wi|1)求对数 p0Vect = np.log(p0Num/p0Denom) return p0Vect,p1Vect,pAbusive '''说明: p(1|w0,w1,w2,...,wn)=[p(w0|1).p(w1|1).p(w2|1).....p(wn|1)]*p(1)/p(w0,w1,w2,...,wn) p(0|w0,w1,w2,...,wn)=[p(w0|0).p(w1|0).p(w2|0).....p(wn|0)]*p(0)/p(w0,w1,w2,...,wn) 因为分母p(w0,w1,w2,...,wn)相等,故只求分子做比较 w0,w1,w2,...,wn相互独立 ''' def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) #分子项,按照公式应该是相乘的,取对数后,则变为相加了 p0 = sum(vec2Classify * p0Vec) + np.log(1 - pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) testEntry = ['love','my','dalmation'] thisDoc = np.array(setOfWords2Vec(myVocabList,testEntry)) if classifyNB(thisDoc,p0V,p1V,pAb): print(testEntry,'属于侮辱类') else: print(testEntry,'属于非侮辱类') testEntry = ['love','stupid','garbage'] thisDoc = np.array(setOfWords2Vec(myVocabList,testEntry)) if classifyNB(thisDoc,p0V,p1V,pAb): print(testEntry,'属于侮辱类') else: print(testEntry,'属于非侮辱类') if __name__ == '__main__': testingNB()
测试结果如下:
['love', 'my', 'dalmation'] 属于非侮辱类 ['love', 'stupid', 'garbage'] 属于侮辱类 进程已结束,退出代码 0
参考《机器学习实战》和博客https://blog.csdn.net/c406495762/article/category/7029976
标签:...,wn,贝叶斯,算法,w2,w1,w0,np,朴树 来源: https://www.cnblogs.com/xuxiaowen1990/p/11170413.html