java – Stanford Dependency Parser – 如何获得跨度?
作者:互联网
我正在使用Java中的Stanford库进行依赖解析.
有没有办法在我的原始依赖字符串中找回索引?
我试图调用getSpans()方法,但它为每个标记返回null:
LexicalizedParser lp = LexicalizedParser.loadModel(
"edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz",
"-maxLength", "80", "-retainTmpSubcategories");
TreebankLanguagePack tlp = new PennTreebankLanguagePack();
GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();
Tree parse = lp.apply(text);
GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);
Collection<TypedDependency> tdl = gs.typedDependenciesCollapsedTree();
for(TypedDependency td:tdl)
{
td.gov().getSpan() // it's null!
td.dep().getSpan() // it's null!
}
任何的想法?
解决方法:
我终于编写了自己的帮助函数,以获得原始字符串的跨度:
public HashMap<Integer, TokenSpan> getTokenSpans(String text, Tree parse)
{
List<String> tokens = new ArrayList<String>();
traverse(tokens, parse, parse.getChildrenAsList());
return extractTokenSpans(text, tokens);
}
private void traverse(List<String> tokens, Tree parse, List<Tree> children)
{
if(children == null)
return;
for(Tree child:children)
{
if(child.isLeaf())
{
tokens.add(child.value());
}
traverse(tokens, parse, child.getChildrenAsList());
}
}
private HashMap<Integer, TokenSpan> extractTokenSpans(String text, List<String> tokens)
{
HashMap<Integer, TokenSpan> result = new HashMap<Integer, TokenSpan>();
int spanStart, spanEnd;
int actCharIndex = 0;
int actTokenIndex = 0;
char actChar;
while(actCharIndex < text.length())
{
actChar = text.charAt(actCharIndex);
if(actChar == ' ')
{
actCharIndex++;
}
else
{
spanStart = actCharIndex;
String actToken = tokens.get(actTokenIndex);
int tokenCharIndex = 0;
while(tokenCharIndex < actToken.length() && text.charAt(actCharIndex) == actToken.charAt(tokenCharIndex))
{
tokenCharIndex++;
actCharIndex++;
}
if(tokenCharIndex != actToken.length())
{
//TODO: throw exception
}
actTokenIndex++;
spanEnd = actCharIndex;
result.put(actTokenIndex, new TokenSpan(spanStart, spanEnd));
}
}
return result;
}
然后我会打电话
getTokenSpans(originalString, parse)
所以我得到一张地图,它可以将每个标记映射到相应的标记范围.
这不是一个优雅的解决方案,但至少它是有效的.
标签:java,parsing,nlp,stanford-nlp 来源: https://codeday.me/bug/20190703/1370289.html