python – 在qcut十分之后选择/过滤垃圾箱
作者:互联网
我试图通过十分位数对数据进行分箱后访问标签(即位置指示器):
q = pd.qcut(df["revenue"], 10)
q.head():
7 (317.942, 500.424]
81 (317.942, 500.424]
83 (150.65, 317.942]
84 [0.19, 150.65]
85 (317.942, 500.424]
Name: revenue, dtype: category
Categories (10, object): [[0.19, 150.65] < (150.65, 317.942] < (317.942, 500.424] < (500.424, 734.916] ... (1268.306, 1648.35]
< (1648.35, 1968.758] < (1968.758, 2527.675] < (2527.675, 18690.2]]
In [233]:
此帖子link显示您可以执行以下操作来访问标签:
>>> q.labels
但当我这样做时,我得到:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-246-e806c96b1ab2> in <module>()
----> 1 q.labels
C:\Users\blah\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
2666 if (name in self._internal_names_set or name in self._metadata or
2667 name in self._accessors):
-> 2668 return object.__getattribute__(self, name)
2669 else:
2670 if name in self._info_axis:
AttributeError: 'Series' object has no attribute 'labels'
在任何情况下,我想要做的是使用标签来过滤我的数据 – 可能是通过在df中添加一个新列来表示十分位数(或分位数)的结果的位置标签.
解决方法:
我个人喜欢使用pd.qcut中的labels参数来指定干净的外观和一致的标签.
np.random.seed([3,1415])
df = pd.DataFrame(dict(revenue=np.random.randint(1000000, 99999999, 100)))
df['decile'] = pd.qcut(df.revenue, 10, labels=range(10))
print(df.head())
正如@jeremycg指出的那样,您可以通过cat accessor属性访问类别信息
df.decile.cat.categories
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
您可以快速描述每个垃圾箱
df.groupby('decile').describe().unstack()
你可以过滤
df.query('decile >= 8')
revenue decile
4 98274570 9
6 99418302 9
19 89598752 8
20 88877661 8
22 90789485 9
29 83126518 8
31 90700517 9
33 96816407 9
40 89937348 8
54 83041116 8
65 83399066 8
66 97055576 9
79 87700403 8
81 88592657 8
82 91963755 9
83 82443566 8
84 84880509 8
88 98603752 9
95 92548497 9
98 98963891 9
你可以在十分位数内得分
df = df.join(df.groupby('decile').revenue.agg(dict(Mean='mean', Std='std')), on='decile')
df['revenue_zscore_by_decile'] = df.revenue.sub(df.Mean).div(df.Std)
df.head()
revenue decile Std Mean revenue_zscore_by_decile
0 32951600 2 2.503325e+06 29649669 1.319018
1 70565451 6 9.639336e+05 71677761 -1.153928
2 6602402 0 5.395453e+06 11166286 -0.845876
3 82040251 7 2.976992e+06 78299299 1.256621
4 98274570 9 3.578865e+06 95513475 0.771500
标签:python,pandas,quantile,binning 来源: https://codeday.me/bug/20190627/1308782.html