C#中的无用变量用于循环反汇编和捕获委托?
作者:互联网
我试着看看this old question中发布的代码的反汇编,我发现了一些奇怪的东西.
为清楚起见,这是源代码:
class ThreadTest
{
static void Main(string[] args)
{
for (int i = 0; i < 10; i++)
new Thread(() => Console.WriteLine(i)).Start();
}
}
(当然这个程序的行为是出乎意料的,这不是问题.)
这是我看到的反汇编:
internal class ThreadTest
{
private static void Main(string[] args)
{
int i;
int j;
for (i = 0; i < 10; i = j + 1)
{
new Thread(delegate
{
Console.WriteLine(i);
}).Start();
j = i;
}
}
}
j在那做什么?这是字节码:
.method private hidebysig static
void Main (
string[] args
) cil managed
{
// Method begins at RVA 0x2050
// Code size 64 (0x40)
.maxstack 2
.entrypoint
.locals init (
[0] class ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0' 'CS$<>8__locals0',
[1] int32
)
IL_0000: newobj instance void ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::.ctor()
IL_0005: stloc.0
IL_0006: ldloc.0
IL_0007: ldc.i4.0
IL_0008: stfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_000d: br.s IL_0035
// loop start (head: IL_0035)
IL_000f: ldloc.0
IL_0010: ldftn instance void ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::'<Main>b__0'()
IL_0016: newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object, native int)
IL_001b: newobj instance void [mscorlib]System.Threading.Thread::.ctor(class [mscorlib]System.Threading.ThreadStart)
IL_0020: call instance void [mscorlib]System.Threading.Thread::Start()
IL_0025: ldloc.0
IL_0026: ldfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_002b: ldc.i4.1
IL_002c: add
IL_002d: stloc.1
IL_002e: ldloc.0
IL_002f: ldloc.1
IL_0030: stfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_0035: ldloc.0
IL_0036: ldfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_003b: ldc.i4.s 10
IL_003d: blt.s IL_000f
// end loop
IL_003f: ret
} // end of method ThreadTest::Main
但这是最奇怪的事情.如果我像这样更改原始代码,用i = i 1替换i:
class ThreadTest
{
static void Main(string[] args)
{
for (int i = 0; i < 10; i = i + 1)
new Thread(() => Console.WriteLine(i)).Start();
}
}
我明白了:
internal class ThreadTest
{
private static void Main(string[] args)
{
int i;
for (i = 0; i < 10; i++)
{
new Thread(delegate
{
Console.WriteLine(i);
}).Start();
}
}
}
这正是我的预期.
这是字节码:
.method private hidebysig static
void Main (
string[] args
) cil managed
{
// Method begins at RVA 0x2050
// Code size 62 (0x3e)
.maxstack 3
.entrypoint
.locals init (
[0] class ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0' 'CS$<>8__locals0'
)
IL_0000: newobj instance void ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::.ctor()
IL_0005: stloc.0
IL_0006: ldloc.0
IL_0007: ldc.i4.0
IL_0008: stfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_000d: br.s IL_0033
// loop start (head: IL_0033)
IL_000f: ldloc.0
IL_0010: ldftn instance void ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::'<Main>b__0'()
IL_0016: newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object, native int)
IL_001b: newobj instance void [mscorlib]System.Threading.Thread::.ctor(class [mscorlib]System.Threading.ThreadStart)
IL_0020: call instance void [mscorlib]System.Threading.Thread::Start()
IL_0025: ldloc.0
IL_0026: ldloc.0
IL_0027: ldfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_002c: ldc.i4.1
IL_002d: add
IL_002e: stfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_0033: ldloc.0
IL_0034: ldfld int32 ConsoleApplication2.ThreadTest/'<>c__DisplayClass0_0'::i
IL_0039: ldc.i4.s 10
IL_003b: blt.s IL_000f
// end loop
IL_003d: ret
} // end of method ThreadTest::Main
为什么编译器在第一个场景中添加j?
注意:我正在使用VS 2015 Update 3,.NET Framework 4.5.2,在发布模式下进行编译.
解决方法:
因为在语义上,当你编写i时,编译器需要保留i的原始值,以便它可以用作表达式的结果值.
编译器通过引入一个新变量来实现这一点,在该变量中可以保留新值,直到使用i的旧值为止.因此,旧值i仍然可以被读取,直到更新的j值被复制到i中.当然,在这种情况下,在将add指令的结果复制到j之后立即发生,因为实际上没有代码确实需要该值.但是,有一段时间我的价值仍然是旧的,如果需要的话就可以使用它.
你可能会说:
But, I never use that value. Why does the compiler keep it? Why not just write the result of the
add
directly intoi
instead of storing it inj
first?
C#编译器不负责优化.它的主要工作是将C#代码转换为IL.事实上,我会说这项工作的一部分是不能非常努力地优化事物,而是遵循常见的实现模式,以便在负责优化的JIT编译器上使事情变得更容易.
通过不包括优化这种退化场景的逻辑,更容易确保C#编译器生成正确的IL,并以可预测,更易于优化的方式执行此操作.
标签:c,closures,for-loop,disassembly 来源: https://codeday.me/bug/20190627/1306777.html