【python数据分析】pandas库之文本处理
作者:互联网
Pandas针对字符串配备的一套方法,使其易于对数组的每个元素进行操作
1、常用方法 lower,upper,len,startswith,endswith
s = pd.Series(['A','b','C','bbhello','123',np.nan,'hj'])
df = pd.DataFrame({'key1':list('abcdef'),
'key2':['hee','fv','w','hija','123',np.nan]})
#统计b出现的次数
print(s.str.count('b'))
print(s.str.lower(),'→ lower小写\n')
print(s.str.upper(),'→ upper大写\n')
print(s.str.len(),'→ len字符长度\n')
print(s.str.startswith('b'),'→ 判断起始是否为a\n')
print(s.str.endswith('3'),'→ 判断结束是否为3\n')
2、字符串常用方法 - strip
s = pd.Series([' jack', 'jill ', ' jesse ', 'frank'])
df = pd.DataFrame(np.random.randn(3, 2), columns=[' Column A ', ' Column B '],
index=range(3))
print(s.str.strip()) # 去除字符串中的空格
print(s.str.lstrip()) # 去除字符串中的左空格
print(s.str.rstrip()) # 去除字符串中的右空格
df.columns = df.columns.str.strip()
print(df)
# 这里去掉了columns的前后空格,但没有去掉中间空格
3、 合并 merge、join
df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
df3 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df4 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
print(pd.merge(df1, df2, on='key'))
print('------')
# left:第一个df
# right:第二个df
# on:参考键
print(pd.merge(df3, df4, on=['key1','key2']))
# 多个链接键
-----------------结果----------------
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 A3 B3 K3 C3 D3
------
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
# 参数how → 合并方式
print(pd.merge(df3, df4,on=['key1','key2'], how = 'inner'))
print('------')
# inner:默认,取交集
print(pd.merge(df3, df4, on=['key1','key2'], how = 'outer'))
print('------')
# outer:取并集,数据缺失范围NaN
print(pd.merge(df3, df4, on=['key1','key2'], how = 'left'))
print('------')
# left:按照df3为参考合并,数据缺失范围NaN
print(pd.merge(df3, df4, on=['key1','key2'], how = 'right'))
# right:按照df4为参考合并,数据缺失范围NaN
# 参数 left_on, right_on, left_index, right_index → 当键不为一个列时,可以单独设置左键与右键
df1 = pd.DataFrame({'lkey':list('bbacaab'),
'data1':range(7)})
df2 = pd.DataFrame({'rkey':list('abd'),
'date2':range(3)})
print(pd.merge(df1, df2, left_on='lkey', right_on='rkey'))
print('------')
# df1以‘lkey’为键,df2以‘rkey’为键
df1 = pd.DataFrame({'key':list('abcdfeg'),
'data1':range(7)})
df2 = pd.DataFrame({'date2':range(100,105)},
index = list('abcde'))
print(pd.merge(df1, df2, left_on='key', right_index=True))
# df1以‘key’为键,df2以index为键
# left_index:为True时,第一个df以index为键,默认False
# right_index:为True时,第二个df以index为键,默认False
# 所以left_on, right_on, left_index, right_index可以相互组合:
# left_on + right_on, left_on + right_index, left_index + right_on, left_index + right_index
4、join
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
'D': ['D0', 'D2', 'D3']},
index=['K0', 'K2', 'K3'])
print(left)
print(right)
print(left.join(right))
print(left.join(right, how='outer'))
print('-----')
# 等价于:pd.merge(left, right, left_index=True, right_index=True, how='outer')
df1 = pd.DataFrame({'key':list('bbacaab'),
'data1':[1,3,2,4,5,9,7]})
df2 = pd.DataFrame({'key':list('abd'),
'date2':[11,2,33]})
print(df1)
print(df2)
print(pd.merge(df1, df2, left_index=True, right_index=True, suffixes=('_1', '_2')))
print(df1.join(df2['date2']))
print('-----')
# suffixes=('_x', '_y')默认
left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'key': ['K0', 'K1', 'K0', 'K1']})
right = pd.DataFrame({'C': ['C0', 'C1'],
'D': ['D0', 'D1']},
index=['K0', 'K1'])
print(left)
print(right)
print(left.join(right, on = 'key'))
# 等价于pd.merge(left, right, left_on='key', right_index=True, how='left', sort=False);
# left的‘key’和right的index
标签:index,right,python,文本处理,K0,pd,print,pandas,left 来源: https://blog.csdn.net/weixin_40027906/article/details/90414397