第五次编程作业-Regularized Linear Regression and Bias v.s. Variance
作者:互联网
1.正规化的线性回归
(1)代价函数
(2)梯度
linearRegCostFunction.m
function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % %求h(θ) h = X * theta; J = 1/2/m *((h-y)'*(h-y)) + lambda/2/m*(theta(2:end,:)'*theta(2:end,:)); grad(1,1) = X(:,1)'*(h-y)/m; grad(2:end,1) = X(:,2:end)'*(h-y)/m +lambda/m * theta(2:end,1); % ========================================================================= grad = grad(:); end
用fmincg最优的theta来拟合线性回归,画出线性回归函数(在这里是低维度的可以画出来)
2.偏差与方差
(1)求训练样本的误差代价:
(2)交叉样本集
Jcv
learningCurve.m
function [error_train, error_val] = ... learningCurve(X, y, Xval, yval, lambda) %LEARNINGCURVE Generates the train and cross validation set errors needed %to plot a learning curve % [error_train, error_val] = ... % LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and % cross validation set errors for a learning curve. In particular, % it returns two vectors of the same length - error_train and % error_val. Then, error_train(i) contains the training error for % i examples (and similarly for error_val(i)). % % In this function, you will compute the train and test errors for % dataset sizes from 1 up to m. In practice, when working with larger % datasets, you might want to do this in larger intervals. % % Number of training examples m = size(X, 1); % You need to return these values correctly error_train = zeros(m, 1); error_val = zeros(m, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Fill in this function to return training errors in % error_train and the cross validation errors in error_val. % i.e., error_train(i) and % error_val(i) should give you the errors % obtained after training on i examples. % % Note: You should evaluate the training error on the first i training % examples (i.e., X(1:i, :) and y(1:i)). % % For the cross-validation error, you should instead evaluate on % the _entire_ cross validation set (Xval and yval). % % Note: If you are using your cost function (linearRegCostFunction) % to compute the training and cross validation error, you should % call the function with the lambda argument set to 0. % Do note that you will still need to use lambda when running % the training to obtain the theta parameters. % % Hint: You can loop over the examples with the following: % % for i = 1:m % % Compute train/cross validation errors using training examples % % X(1:i, :) and y(1:i), storing the result in % % error_train(i) and error_val(i) % .... % % end % % ---------------------- Sample Solution ---------------------- %进行训练的时候,对训练样本i个进行训练得到theta值,再求J for i = 1:m theta = trainLinearReg(X(1:i,:), y(1:i), lambda); error_train(i) = linearRegCostFunction(X(1:i,:), y(1:i), theta, 0); error_val(i) = linearRegCostFunction(Xval, yval,theta,0); end % ------------------------------------------------------------- % ========================================================================= end
学习曲线如下:
3.多项式回归
(1) 上面学习曲线可以看出来高偏差,欠拟合。采用增加特性来拟合,即多项式如下:
polyFeatures.m
function [X_poly] = polyFeatures(X, p) %POLYFEATURES Maps X (1D vector) into the p-th power % [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and % maps each example into its polynomial features where % X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ... X(i).^p]; % % You need to return the following variables correctly. X_poly = zeros(numel(X), p); % ====================== YOUR CODE HERE ====================== % Instructions: Given a vector X, return a matrix X_poly where the p-th % column of X contains the values of X to the p-th power. % % for i=1:p X_poly(:,i) = X.^i; end % ========================================================================= end
(2) 画出学习曲线
(2)可以看出出现了高方差,过拟合。选择一个好的正则化参数lambda。
利用交叉验证集来选择合适的lambda,选择最小的Jcv对应的lambda。(在这里求代价误差的时候就不用加正则化项了)
trainLinearReg.m
function [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval) %VALIDATIONCURVE Generate the train and validation errors needed to %plot a validation curve that we can use to select lambda % [lambda_vec, error_train, error_val] = ... % VALIDATIONCURVE(X, y, Xval, yval) returns the train % and validation errors (in error_train, error_val) % for different values of lambda. You are given the training set (X, % y) and validation set (Xval, yval). % % Selected values of lambda (you should not change this) lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]'; % You need to return these variables correctly. error_train = zeros(length(lambda_vec), 1); error_val = zeros(length(lambda_vec), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Fill in this function to return training errors in % error_train and the validation errors in error_val. The % vector lambda_vec contains the different lambda parameters % to use for each calculation of the errors, i.e, % error_train(i), and error_val(i) should give % you the errors obtained after training with % lambda = lambda_vec(i) % % Note: You can loop over lambda_vec with the following: % % for i = 1:length(lambda_vec) % lambda = lambda_vec(i); % % Compute train / val errors when training linear % % regression with regularization parameter lambda % % You should store the result in error_train(i) % % and error_val(i) % .... % % end % for i = 1:length(lambda_vec) lambda = lambda_vec(i); theta = trainLinearReg(X, y, lambda); %10x1选择最优的theta error_train(i,1) = linearRegCostFunction(X, y, theta, 0); error_val(i,1) = linearRegCostFunction(Xval, yval, theta, 0); end % ========================================================================= end
(3)计算测试集代价误差3.8599,(根据上面得到的最优的λ= 3)
(4)画出学习曲线
标签:errors,Linear,val,Regularized,train,error,theta,lambda,Bias 来源: https://www.cnblogs.com/sunxiaoshu/p/10782967.html