ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

Pybind11实现python调取C++

2022-08-24 20:04:22  阅读:369  来源: 互联网

标签:python double py C++ buf1 shape Pybind11 array numpy


1、一些处理矩阵运算,图像处理算法,直接采用python实现可能速度稍微慢,效率不高,或者为了直接在python中调用其他C++第三方库。 图像,矩阵在python中通常表示为numpy.ndarray,因此如何在C++中解析numpy对象,numpy的数据如何传递到C++非常关键,解决了这些问题,就可以丝滑的在python numpy和C++中切换,互相调用。

C++代码:

#include<iostream>
#include<pybind11/pybind11.h>
#include<pybind11/numpy.h>

namespace py = pybind11;

/*
1d矩阵相加
*/
py::array_t<double> add_arrays_1d(py::array_t<double>& input1, py::array_t<double>& input2) {

    // 获取input1, input2的信息
    py::buffer_info buf1 = input1.request();
    py::buffer_info buf2 = input2.request();

    if (buf1.ndim !=1 || buf2.ndim !=1)
    {
        throw std::runtime_error("Number of dimensions must be one");
    }

    if (buf1.size !=buf2.size)
    {
        throw std::runtime_error("Input shape must match");
    }

    //申请空间
    auto result = py::array_t<double>(buf1.size);
    py::buffer_info buf3 = result.request();

    //获取numpy.ndarray 数据指针
    double* ptr1 = (double*)buf1.ptr;
    double* ptr2 = (double*)buf2.ptr;
    double* ptr3 = (double*)buf3.ptr;

    //指针访问numpy.ndarray
    for (int i = 0; i < buf1.shape[0]; i++)
    {
        ptr3[i] = ptr1[i] + ptr2[i];
    }

    return result;

}

/*
2d矩阵相加
*/
py::array_t<double> add_arrays_2d(py::array_t<double>& input1, py::array_t<double>& input2) {

    py::buffer_info buf1 = input1.request();
    py::buffer_info buf2 = input2.request();

    if (buf1.ndim != 2 || buf2.ndim != 2)
    {
        throw std::runtime_error("numpy.ndarray dims must be 2!");
    }
    if ((buf1.shape[0] != buf2.shape[0])|| (buf1.shape[1] != buf2.shape[1]))
    {
        throw std::runtime_error("two array shape must be match!");
    }

    //申请内存
    auto result = py::array_t<double>(buf1.size);
    //转换为2d矩阵
    result.resize({buf1.shape[0],buf1.shape[1]});


    py::buffer_info buf_result = result.request();

    //指针访问读写 numpy.ndarray
    double* ptr1 = (double*)buf1.ptr;
    double* ptr2 = (double*)buf2.ptr;
    double* ptr_result = (double*)buf_result.ptr;

    for (int i = 0; i < buf1.shape[0]; i++)
    {
        for (int j = 0; j < buf1.shape[1]; j++)
        {
            auto value1 = ptr1[i*buf1.shape[1] + j];
            auto value2 = ptr2[i*buf2.shape[1] + j];

            ptr_result[i*buf_result.shape[1] + j] = value1 + value2;
        }
    }

    return result;

}

//py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {
//  
//  py::buffer_info buf1 = input1.request();
//  py::buffer_info buf2 = input2.request();
//
//  if (buf1.ndim != 3 || buf2.ndim != 3)
//      throw std::runtime_error("numpy array dim must is 3!");
//
//  for (int i = 0; i < buf1.ndim; i++)
//  {
//      if (buf1.shape[i]!=buf2.shape[i])
//      {
//          throw std::runtime_error("inputs shape must match!");
//      }
//  }
//
//  // 输出
//  auto result = py::array_t<double>(buf1.size);
//  result.resize({ buf1.shape[0], buf1.shape[1], buf1.shape[2] });
//  py::buffer_info buf_result = result.request();
//
//  // 指针读写numpy数据
//  double* ptr1 = (double*)buf1.ptr;
//  double* ptr2 = (double*)buf2.ptr;
//  double* ptr_result = (double*)buf_result.ptr;
//
//  for (int i = 0; i < buf1.size; i++)
//  {
//      std::cout << ptr1[i] << std::endl;
//  }
//
//  /*for (int i = 0; i < buf1.shape[0]; i++)
//  {
//      for (int j = 0; j < buf1.shape[1]; j++)
//      {
//          for (int k = 0; k < buf1.shape[2]; k++)
//          {
//
//              double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
//              double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
//              double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
//              double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
//              ptr_result[i*buf1.shape[1] * buf1.shape[2] + k] = value1 + value2;
//
//              std::cout << value1 << " ";
//
//          }
//
//          std::cout << std::endl;
//
//      }
//  }*/
//
//  return result;
//}

/*
numpy.ndarray 相加,  3d矩阵
@return 3d numpy.ndarray
*/
py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {

    //unchecked<N> --------------can be non-writeable
    //mutable_unchecked<N>-------can be writeable
    auto r1 = input1.unchecked<3>();
    auto r2 = input2.unchecked<3>();

    py::array_t<double> out = py::array_t<double>(input1.size());
    out.resize({ input1.shape()[0], input1.shape()[1], input1.shape()[2] });
    auto r3 = out.mutable_unchecked<3>();

    for (int i = 0; i < input1.shape()[0]; i++)
    {
        for (int j = 0; j < input1.shape()[1]; j++)
        {
            for (int k = 0; k < input1.shape()[2]; k++)
            {
                double value1 = r1(i, j, k);
                double value2 = r2(i, j, k);

                //下标索引访问 numpy.ndarray
                r3(i, j, k) = value1 + value2;
            
            }
        }
    }

    return out;

}

PYBIND11_MODULE(numpy_demo2, m) {

    m.doc() = "Simple demo using numpy!";

    m.def("add_arrays_1d", &add_arrays_1d);
    m.def("add_arrays_2d", &add_arrays_2d);
    m.def("add_arrays_3d", &add_arrays_3d);
}

python测试代码:

import demo9.numpy_demo2 as numpy_demo2
import numpy as np


var1 = numpy_demo2.add_arrays_1d(np.array([1, 3, 5, 7, 9]),
                                 np.array([2, 4, 6, 8, 10]))
print('-'*50)
print('var1', var1)

var2 = numpy_demo2.add_arrays_2d(np.array(range(0,16)).reshape([4, 4]),
                                 np.array(range(20,36)).reshape([4, 4]))
print('-'*50)
print('var2', var2)

input1 = np.array(range(0, 48)).reshape([4, 4, 3])
input2 = np.array(range(50, 50+48)).reshape([4, 4, 3])
var3 = numpy_demo2.add_arrays_3d(input1,
                                 input2)
print('-'*50)
print('var3', var3)

 

结果如下:
在这里插入图片描述
2、python传递图像给C++

需要注意的是:这里传入的图像都是8U的,0-255数值,如果不是此类的数值需要进行修改,见后续!

#include <pybind11/numpy.h>

/*
Python->C++ Mat
*/
cv::Mat numpy_uint8_1c_to_cv_mat(py::array_t<unsigned char>& input) {

    if (input.ndim() != 2)
        throw std::runtime_error("1-channel image must be 2 dims ");

    py::buffer_info buf = input.request();

    cv::Mat mat(buf.shape[0], buf.shape[1], CV_8UC1, (unsigned char*)buf.ptr);
    
    return mat;
}

cv::Mat numpy_uint8_3c_to_cv_mat(py::array_t<unsigned char>& input) {

    if (input.ndim() != 3)
        throw std::runtime_error("3-channel image must be 3 dims ");

    py::buffer_info buf = input.request();

    cv::Mat mat(buf.shape[0], buf.shape[1], CV_8UC3, (unsigned char*)buf.ptr);

    return mat;
}


/*
C++ Mat ->numpy
*/
py::array_t<unsigned char> cv_mat_uint8_1c_to_numpy(cv::Mat& input) {

    py::array_t<unsigned char> dst = py::array_t<unsigned char>({ input.rows,input.cols }, input.data);
    return dst;
}

py::array_t<unsigned char> cv_mat_uint8_3c_to_numpy(cv::Mat& input) {

    py::array_t<unsigned char> dst = py::array_t<unsigned char>({ input.rows,input.cols,3}, input.data);
    return dst;
}



//PYBIND11_MODULE(cv_mat_warper, m) {
//
//  m.doc() = "OpenCV Mat -> Numpy.ndarray warper";
//
//  m.def("numpy_uint8_1c_to_cv_mat", &numpy_uint8_1c_to_cv_mat);
//  m.def("numpy_uint8_1c_to_cv_mat", &numpy_uint8_1c_to_cv_mat);
//
//
//}


***如果数值不是0-255,需要进行原始数据的计算,如下:***

py::array_t<unsigned char> remove_background(py::array_t<int>& input1 py::array_t<unsigned char>& color, int max_dist)
{
    cv::Mat color_image = numpy_uint8_3c_to_cv_mat(color);
    py::buffer_info buf1 = input1.request();
    int* ptr1 = (int*)buf1.ptr;
    for (int i = 0; i < buf1.shape[0]; i++)
    {
        for (int j = 0; j < buf1.shape[1]; j++)
        {
            auto value1 = ptr1[i*buf1.shape[1] + j];
            if (value1 > max_dist)
            {
                color_image.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
            }
        }
    }
}

3、python传递list给C++

例,python传递25个关节点的x,y,score给C++,C++返回x,y,score和空间的x,y,z给python

在这里插入图片描述

 

标签:python,double,py,C++,buf1,shape,Pybind11,array,numpy
来源: https://www.cnblogs.com/lidabo/p/16621369.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有