编程语言
首页 > 编程语言> > 强化学习-学习笔记7 | Sarsa算法原理与推导

强化学习-学习笔记7 | Sarsa算法原理与推导

作者:互联网

Sarsa算法 是 TD算法的一种,之前没有严谨推导过 TD 算法,这一篇就来从数学的角度推导一下 Sarsa 算法。注意,这部分属于 TD算法的延申。

7. Sarsa算法

7.1 推导 TD target

推导:Derive。

这一部分就是Sarsa 最重要的内核。

折扣回报:$U_t=R_t+\gamma R_{t+1}+\gamma^2 R_{t+2}+\gamma^3 R_{t+3}+\cdots \ \quad={R_t} + \gamma \cdot U_{t+1} $

即 将\(R_{t+1}\)之后 都提出一个 \(\gamma\) 项,后面括号中的式子意义正为 \(U_{t+1}\)

通常认为奖励 \(R_t\)依赖于 t 时刻的状态 \(S_t\) 与 动作 \(A_t\) 以及 t+1 时刻的状态 \(S_{t+1}\)。

当时对于为什么依赖于 \(S_{t+1}\) 有疑问,我回去翻看了 学习笔记1:https://www.cnblogs.com/Roboduster/p/16442003.html ,发现并强调了以下这一点:

“值得注意的是,这个 r1 是什么时候给的?是在状态 state s2 的时候给的。”

状态价值函数 \(Q_\pi({s_t},{a_t}) = \mathbb{E}[U_t|{s_t},{a_t}]\) 是回报 \(U_t\) 的期望;

下面研究上式的第二项:\(\mathbb{E}[ U_{t+1} |{s_t},{a_t}]\)

其等于 \(\mathbb{E}[ Q_\pi({s_{t+1}},{a_{t+1}}) |{s_t},{a_t}]\)

Q 是 U 的期望:所以 \(E(E[])=E()\),期望的期望还是原来的期望;这里是逆用这个性质。这么做是为了让等式两边都有 \(Q_\pi\) 函数,如下:

于是便得到: \(Q_\pi({s_t},{a_t}) =\mathbb{E}[{R_t} |{s_t},{a_t}] + \gamma\cdot\mathbb{E}[ Q_\pi({s_{t+1}},{a_{t+1}}) {s_t},{a_t}] \\ Q_\pi({s_t},{a_t})=\mathbb{E}[{R_t} + \gamma \cdot Q_\pi({S_{t+1}},{A_{t+1}})]\)

右侧有一个期望,但直接求期望很困难,所以通常是对期望求蒙特卡洛近似。

  1. \(R_t\) 近似为观测到奖励\(r_t\)
  2. \(Q_\pi({S_{t+1}},{A_{t+1}})\)用观测到的 \(Q_\pi({s_{t+1}},{a_{t+1}})\) 来近似
  3. 得到蒙特卡洛近似值\(\approx {r_t} + \gamma \cdot Q_\pi({s_{t+1}},{a_{t+1}})\)
  4. 将这个值表示为 TD target \(y_t\)

TD learning 目标:让 $Q_\pi({s_t},{a_t}) $ 来接近部分真实的奖励 \(y_t\)。

\(Q_\pi\) 完全是估计,而 \(y_t\) 包含了一部分真实奖励,所以 \(y_t\) 更可靠。

7.2 Sarsa算法过程

这是一种TD 算法。

a. 表格形式

如果我们想要学习动作价值 $Q_\pi({s_t},{a_t}) $,假设状态和动作都是有限的,可以画一个表来表示:

  1. 表每个元素代表一个动作价值;
  2. 用 Sarsa 算法更新表格,每次更新一个元素;

每一步中,Sarsa 算法用 \((s_t,a_T,r_t,s_{t+1},a_{t+1})\) 来更新 \(Q_\pi\),sarsa,这就是算法名字的由来。

b. 神经网络形式

值得留意的是表格形式的假设:假设状态和动作都是有限的,而当状态和动作很多,表格就会很大,很难学习。

输入状态是 s ,输出就是所有动作的价值

7.3 一些解惑 / 有什么不同

这一篇跟第二篇价值学习内容看似很接近,甚至在第四篇 actor-critic 中也有提及,可能会困惑 这个第七篇有什么特别的,我也困惑了一会儿,然后我发现是自己的学习不够仔细:

第二篇和第四篇的 价值网络 学习方法并不同。虽然都用到了 以TD target 为代表的TD 算法。但是两者的学习函数并不相同!

  1. Sarsa算法 学习动作价值函数 \(Q_\pi(s,a)\)

  2. Actor-Critic 中的价值网络j就是用 Sarsa 训练的

  3. 而第二篇 DQN 中的 TD 学习 是训练最优动作价值函数:
    $Q ^*( s , a ) $

    而这种方法在下一篇中很快会提及,这就是 Q-learning 方法。

参考:

TD算法总述

Sarsa算法及其代码

标签:推导,cdot,学习,算法,Sarsa,TD,pi,gamma
来源: https://www.cnblogs.com/Roboduster/p/16454245.html