编程语言
首页 > 编程语言> > webrtc aecd算法解析一(原理分析)

webrtc aecd算法解析一(原理分析)

作者:互联网

webrtc的回声抵消(aec、aecm)算法主要包括以下几个重要模块:

回声时延估计

 

这张图很多东西可以无视,我们重点看T0,T1,T2三项。

一般来说,一个设备如果能找到合适的delay,那么这个设备再做回声消除处理就和降噪增益一样几乎没什么难度了。如iPhone的固定delay是60ms。不过这个要看代码所在位置,假如在芯片内部,时间还是比较少的,并且容易固定,假如在系统应用层软件,整个时间就不确定了。相对比较大了。

NLMS(归一化最小均方自适应算法)

NLP(非线性滤波)

  非线性滤波器的原始数据与滤波结果是一种逻辑关系,即用逻辑运算实现,如最大值滤波器、最小值滤波器、中值滤波器等,是通过比较一定邻域内的灰度值大小来实现的,没有固定的模板,因而也就没有特定的转移函数(因为没有模板作傅里叶变换)。

  webrtc采用了维纳滤波器。此处只给出传递函数的表达式,设估计的语音信号的功率谱为Ps(w),噪声信号的功率谱为Pn(w),则滤波器的传递函数为H(w)=Ps(w)/(Ps(w)+Pn(w))。

CNG(舒适噪声产生)

  舒适噪音生成(comfort noise generator,CNG)是一个在通话过程中出现短暂静音时用来为电话通信产生背景噪声的程序。

webrtc采用的舒适噪声生成器比较简单,首先生成在[0 ,1 ]上均匀分布的随机噪声矩阵,再用噪声的功率谱开方后去调制噪声的幅度。

应用场景

  webrtc AEC算法是属于分段快频域自适应滤波算法,Partioned block frequeney domain adaPtive filter(PBFDAF)。具体可以参考Paez Borrallo J M and Otero M G

  使用该AEC算法要注意两点:

标签:滤波器,回声,NLMS,滤波,算法,aecd,webrtc
来源: https://www.cnblogs.com/dylancao/p/10529191.html