维特比(Viterbi)算法,近似算法序列过长导致出现0概率而使程序运行失败的处理方法
作者:互联网
原始Viterbi算法
(1) 初始化 (初始状态向量乘以第一个观测 $ o_{1} $ ) :
\[\begin{array} \delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad i=1,2, \cdots, N \\ \psi_{1}(i)=0, \quad t=1,2, \ldots, N \end{array} \](2) 递推,对于 $ t=2,3, \ldots, T $
\[\delta_{t}(i)=\max _{1 \leq j<N}\left[\delta_{t-1}(j) a_{j i}\right] b_{i}\left(O_{t}\right) i=1,2, \ldots, N \]记录当前状态:
\[\psi_{t}(i)=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_{t-1}(j) a_{j i}\right] i=1,2, \ldots, N \](3) 终止:
\[\begin{array} P^{*}=\max _{1 \leqslant i \leqslant N} \delta_{T}(i) \\ i_{T}^{*}=\arg \max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] \end{array} \](4) 最优路径回溯.对于 $ t=T-1, T-2, \cdots, 1 $
\[i_{t}^{*}=\psi_{t+1}\left(i_{t+1}^{*}\right) \]求得的最优路径也就是最可能的状态序列为: $ I{*}=\left(i_{1}{}, i_{2}^{}, \cdots, i_{T}^{*}\right) $
对原始Viterbi算法进行改进,在计算\(t\)时刻的局部状态\(\boldsymbol{\delta_t}\)后,对\(\boldsymbol{\delta_t}\)进行发大处理
\[\boldsymbol{\delta_t}=\boldsymbol{\delta_t}/\max(\boldsymbol{\delta_t}) \]改进Viterbi算法
(1) 初始化 (初始状态向量乘以第一个观测 $ o_{1} $ ) :
\[\begin{array} \delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad i=1,2, \cdots, N \\ \psi_{1}(i)=0, \quad t=1,2, \ldots, N \end{array} \]对中间状态变量\(\boldsymbol{\delta_t}\)进行发大
\[\boldsymbol{\delta_1}=\boldsymbol{\delta_1}/\max(\boldsymbol{\delta_1}) \](2) 递推,对于 $ t=2,3, \ldots, T $
\[\delta_{t}(i)=\max _{1 \leq j<N}\left[\delta_{t-1}(j) a_{j i}\right] b_{i}\left(O_{t}\right) i=1,2, \ldots, N \]记录当前状态:
\[\psi_{t}(i)=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_{t-1}(j) a_{j i}\right] i=1,2, \ldots, N \]对中间状态变量\(\boldsymbol{\delta_t}\)进行发大
\[\boldsymbol{\delta_t}=\boldsymbol{\delta_t}/\max(\boldsymbol{\delta_t}) \](3) 终止:
\[\begin{array} P^{*}=\max _{1 \leqslant i \leqslant N} \delta_{T}(i) \\ i_{T}^{*}=\arg \max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] \end{array} \](4) 最优路径回溯.对于 $ t=T-1, T-2, \cdots, 1 $
\[i_{t}^{*}=\psi_{t+1}\left(i_{t+1}^{*}\right) \]求得的最优路径也就是最可能的状态序列为: $ I{*}=\left(i_{1}{}, i_{2}^{}, \cdots, i_{T}^{*}\right) $
该算法下求得的最优路径与原算法求得的最优路径相同。
证明:
设原算法的中间变量为\(\delta,\psi\),最优路径\(I^*\),改进算法的中间变量为\(\delta',\psi'\),最优路径\(I^{*'}\)
\(t=1\)时:
\[\begin{array} \delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad i=1,2, \cdots, N \\ \psi_{1}(i)=0, \quad t=1,2, \ldots, N \end{array} \]令\(a=\max(\boldsymbol{\delta_1})\)
\[\begin{array} \delta_{1}(i)'&=\delta_1(i)/a \\ &=\delta_1(i)/\max(\boldsymbol{\delta_1}) \quad i=1,2, \ldots, N \end{array} \]\[\begin{array} \psi_1'(i)&=\psi_{1}(i)\\ \end{array} \]\(t=2\)时:
\[\delta_{2}(i)=\max _{1 \leq j<N}\left[\delta_{1}(j) a_{j i}\right] b_{i}\left(O_{2}\right) \quad i=1,2, \ldots, N \]\[\begin{array} \psi_{2}(i)=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_{1}(j) a_{j i}\right] \end{array} \]\[\begin{array} \delta_{2}'(i)&=\max _{1 \leq j<N}\left[\delta_{2}'(j) a_{j i}\right] b_{i}\left(O_{2}\right) \\ &=\max _{1 \leq j<N}\left[\delta_{1}(j)/\max(\boldsymbol{\delta_{t}}) a_{j i}\right] b_{i}\left(O_{2}\right)\\ &=\max _{1 \leq j<N}\left[\delta_{1}(j) a_{j i}\right] b_{i}\left(O_{2}\right)/\max(\boldsymbol{\delta_{1}})\\ &=\delta_{2}(i)/\max(\boldsymbol{\delta_{1}}) \quad i=1,2, \ldots, N \end{array} \]\[\begin{array} \psi_2'(i)&=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_{1}'(j) a_{j i}\right]\\ &=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_1(i)/\max(\boldsymbol{\delta_1}) a_{j i}\right]\\ &=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_1(i) a_{j i}\right]\\ &=\psi_2(i) \end{array} \]令
\[\begin{array} a &=\max(\boldsymbol{\delta_{2}'})\\ &=\max_{1\leq i\leq N} \left[ \delta_{2}(i)/\max(\boldsymbol{\delta_{1}})\right]\\ &=\max(\boldsymbol{\delta_{2}})/max(\boldsymbol{\delta_{1}}) \end{array} \]则
\[\begin{array} \delta_{2}'(i)&=\delta_{2}'(i)/a\\ &=\left\{\delta_{2}(i)/\max(\boldsymbol{\delta_{1}})\right\}/\left\{\max(\boldsymbol{\delta_{2}})/max(\boldsymbol{\delta_{1}})\right\}\\ &=\delta_{2}(i)/\max(\boldsymbol{\delta_{2}}) \end{array} \]同理可递推得到以下结论
\[\delta_{t}'(i)=\delta_{t}(i)/\max(\boldsymbol{\delta_{t}}) \quad i=2,3, \ldots, N \]\[\psi_t'(i)=\psi_t(i) \quad i=2,3 \ldots, N \]终止条件
\[\begin{array} P^{*'}&=\max _{1 \leqslant i \leqslant N} \delta_{T}'(i) \\ &= \max _{1 \leq i \leq N}\left[\delta_{T}(i)/\max(\boldsymbol{\delta_{t}})\right]\\ &= \max _{1 \leq i \leq N}\left[\delta_{T}(i)\right]\\ &=P^{*} \end{array} \]\[\begin{array} i_{T}^{*'}&=\arg \max _{1 \leq i \leq N}\left[\delta_{T}'(i)\right]\\ &=\arg \max _{1 \leq i \leq N}\left[\delta_{T}(i)/\max(\boldsymbol{\delta_{t}})\right]\\ &=\arg \max _{1 \leq i \leq N}\left[\delta_{T}(i)\right]\\ &=i_{T}^{*} \end{array} \]最优路径回溯.对于 $ t=T-1, T-2, \cdots, 1 $
\[\begin{array} i_{t}^{*'}&=\psi_{t+1}'\left(i_{t+1}^{*'}\right)\\ &=\psi_{t+1}\left(i_{t+1}^{*}\right)\\ &=i_{t}^{*} \end{array} \]求得的最优路径也就是最可能的状态序列为:
\[\begin{array} I^{*'}&=\left(i_{1}^{*'}, i_{2}^{*'}, \cdots, i_{T}^{*'}\right) \\ &=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right)\\ &=I^{*} \end{array} \]得证。
近似算法
前向算法
- 计算初值
- 递推计算 $ t+1 $ 时刻,状态为 $ q_{i} $ 的向前概率:
后向算法
- 计算初值:
近似算法
\[\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)} \]在每一时刻 $ \mathrm{t} $ 最有可能的状态 \(i_{t}^{*}\) 是:
\[i_{t}^{*}=\arg \max _{1 \leqslant i \leqslant N}\left[\gamma_{t}(i)\right], \quad t=1,2, \cdots, T \]从而得到状态序列 $ I^{*} $ :
\[I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) \]与改进Viterbi算法类似,在计算前向算法的中间状态概率\(\alpha_t(i)\)和后向算法的中间状态概率\(\beta_t(i)\)时,对两个概率进行放大
\[\begin{array} \alpha_t(i)=\alpha_t(i)/\max(\boldsymbol{\alpha_t})\\ \beta_t(i)=\beta_t(i)/\max(\boldsymbol{\beta_t}) \end{array} \]则改进近似算法中的前向和后向算法的计算流程如下:
前向算法
- 计算初值
- 向前递推
后向算法
- 计算初值:
- 向后递推
近似算法
\[\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)} \]在每一时刻 $ \mathrm{t} $ 最有可能的状态 \(i_{t}^{*}\) 是:
\[i_{t}^{*}=\arg \max _{1 \leqslant i \leqslant N}\left[\gamma_{t}(i)\right], \quad t=1,2, \cdots, T \]从而得到状态序列 $ I^{*} $ :
\[I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) \]改进近似算法得到的状态序列与原始算法相同
证明:
设原算法中前向算法和后向算法的中间状态概率分别为\(\alpha,\beta\),改进近似算法中前向算法和后向算法的中间状态概率分别为\(\alpha',\beta'\)
前向算法
\(t=1\)时
\[\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad i=1,2, \cdots, N \]\[\alpha_1'(i)=\alpha_1(i)/\max(\boldsymbol{\alpha_1}) \quad i=1,2, \cdots, N \]\(t=2\)时
\[\alpha_{2}(i)=\left[\sum_{j=1}^{N} \alpha_{1}(j) a_{j i}\right] b_{i}\left(o_{2}\right), \quad i=1,2, \cdots, N \]\[\begin{array} \alpha_{2}'(i)&=\left[\sum_{j=1}^{N} \alpha_{1}'(j) a_{j i}\right] b_{i}\left(o_{2}\right)\\ &=\left[\sum_{j=1}^{N} \alpha_1(i)/\max(\boldsymbol{\alpha_1}) a_{j i}\right] b_{i}\left(o_{2}\right)\\ &=\left[\sum_{j=1}^{N} \alpha_1(i) a_{j i}\right] b_{i}\left(o_{2}\right)/\max(\boldsymbol{\alpha_1})\\ &=\alpha_2(i)/\max(\boldsymbol{\alpha_1})\quad i=1,2, \cdots, N \end{array} \]令
\[\begin{array} a &=\max(\boldsymbol{\alpha_{2}'})\\ &=\max_{1\leq i\leq N} \left[ \alpha_{2}(i)/\max(\boldsymbol{\alpha_{1}})\right]\\ &=\max(\boldsymbol{\alpha_{2}})/max(\boldsymbol{\alpha_{1}}) \end{array} \]则
\[\begin{array} \alpha_{2}'(i)&=\alpha_{2}'(i)/a\\ &=\left\{\alpha_2(i)/\max(\boldsymbol{\alpha_1})\right\}/\left\{\max(\boldsymbol{\alpha_{2}})/max(\boldsymbol{\alpha_{1}})\right\}\\ &=\alpha_2(i)/\max(\boldsymbol{\alpha_{2}}) \end{array} \]递推可得
\[\alpha_{t}'(i)=\alpha_t(i)/\max(\boldsymbol{\alpha_{t}}) \quad t=2,3,\cdots T \]后向算法
\(t=T\)时
\[\beta_{T}(i)=1 \quad i=1,2, \cdots, N \]\[\beta_T'(i)=\beta_T(i)/\max(\boldsymbol{\beta_T}) \quad i=1,2, \cdots, N \]\(t=T-1\)时
\[\beta_{T-1}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{T}\right) \beta_{T}(j), \quad i=1,2, \cdots, N \]\[\begin{array} \beta_{T-1}'(i)&=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{T}\right) \beta_{T}'(j)\\ &=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{T}\right)\beta_T(i)/\max(\boldsymbol{\beta_T})\\ &=\beta_{T-1}'(i)/\max(\boldsymbol{\beta_T})\quad i=1,2, \cdots, N \end{array} \]令
\[\begin{array} a &=\max(\boldsymbol{\beta_{T-1}'})\\ &=\max_{1\leq i\leq N} \left[ \beta_{T-1}(i)/\max(\boldsymbol{\beta_{T}})\right]\\ &=\max(\boldsymbol{\beta_{T-1}})/max(\boldsymbol{\beta_{T}}) \end{array} \]则
\[\begin{array} \beta_{T-1}'(i)&=\beta_{T-1}'(i)/a\\ &=\left\{\beta_{T-1}(i)/\max(\boldsymbol{\beta_T})\right\}/\left\{\max(\boldsymbol{\beta_{T-1}})/max(\boldsymbol{\beta_{T}})\right\}\\ &=\beta_{T-1}(i)/\max(\boldsymbol{\beta_{T-1}}) \end{array} \]递推可得
\[\beta_{t}'(i)=\beta_t(i)/\max(\boldsymbol{\beta_{t}}) \quad t=1,2,\cdots T-1 \]改进近似算法
\[\begin{array} \gamma_{t}'(i)&=\frac{\alpha_{t}'(i) \beta_{t}'(i)}{\sum_{j=1}^{N} \alpha_{t}'(j) \beta_{t}'(j)}\\ &=\frac{\alpha_t(i)\beta_t(i)/\left\{\max(\boldsymbol{\alpha_{t}})\max(\boldsymbol{\beta_{t}})\right\}}{\sum_{j=1}^{N} \alpha_t(j)\beta_t(j)/\left\{\max(\boldsymbol{\alpha_{t}})\max(\boldsymbol{\beta_{t}})\right\}}\\ &=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}\\ &=\gamma_{t}(i) \quad i=1,2,\cdots,N \end{array} \]在每一时刻 $ \mathrm{t} $ 最有可能的状态 \(i_{t}^{*}\) 是:
\[\begin{array} i_{t}^{*'}&=\arg \max _{1 \leqslant i \leqslant N}\left[\gamma_{t}'(i)\right]\\ &=\arg \max _{1 \leqslant i \leqslant N}\left[\gamma_{t}(i)\right]\\ &=i_{t}^{*}\quad t=1,2, \cdots, T \end{array} \]从而得到状态序列 $ I^{*'} $ :
\[I^{*'}=I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) \]得证。
标签:right,程序运行,max,boldsymbol,Viterbi,delta,alpha,left,近似算法 来源: https://www.cnblogs.com/jiuman/p/16294711.html