老旧照片模糊照片修复——C++实现GFPGAN模型部署
作者:互联网
前言
1.回家过年,总是有意或无意间翻到一些旧时的照片,旧照片作为时光记忆的载体和岁月流转的见证,不单单是过去美好时光的传承者,同时也是每个人的情结和怀念的寄托。随着时间的流逝,许多老照片都因为自然或人为原因,受到了侵蚀损坏,画面模糊、褪色、照片磨损严重等现象,甚至还有的因为保管不好导致照片面目全非。作为一个程序员,随着旧照片的损坏,你再也无法证明你也曾经满头秀发,你也曾经意气风发,有过明亮的眼眸。
2.GFPGAN是Tencent开源的一个旧照片修复算法,它能够让这些老照片恢复原有的光泽,使用了GAN算法对照片进行修复,效果比其他同类模型都有更好的表现。如果对算法和如何训练模型可转到github:https://github.com/TencentARC/GFPGAN .
3.这里只是演示如何使用C++调用官方给出训练好的模型,开发环境是win10, vs2019, opencv4.5, ncnn,如果要启用GPU加速,所以用到VulkanSDK,实现语言是C++。
4.官方给出的测试效果对比图:
C++代码实现:
第一张是原图,第二张是只修复人脸,第三张是修复全身:
二、实现代码
#include <vector>
#include <ostream>
#include <random>
#include <chrono>
#include <stdio.h>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <ncnn/net.h>
#include <ncnn/cpu.h>
#include "gfpgan.h"
#include "face.h"
#include "realesrgan.h"
static void toOcv( const ncnn::Mat& result, cv::Mat& out)
{
cv::Mat cv_result_32F = cv::Mat::zeros(cv::Size(512, 512), CV_32FC3);
for (int i = 0; i < result.h; i++)
{
for (int j = 0; j < result.w; j++)
{
cv_result_32F.at<cv::Vec3f>(i, j)[2] = (result.channel(0)[i * result.w + j] + 1) / 2;
cv_result_32F.at<cv::Vec3f>(i, j)[1] = (result.channel(1)[i * result.w + j] + 1) / 2;
cv_result_32F.at<cv::Vec3f>(i, j)[0] = (result.channel(2)[i * result.w + j] + 1) / 2;
}
}
cv::Mat cv_result_8U;
cv_result_32F.convertTo(cv_result_8U, CV_8UC3, 255.0, 0);
cv_result_8U.copyTo(out);
}
void mergeImage(std::vector<cv::Mat>& src_vor, cv::Mat& cv_dst, int channel)
{
cv::Mat img_merge;
cv::Size size(src_vor.at(0).cols * src_vor.size(), src_vor.at(0).rows);
if (channel == 1)
{
img_merge.create(size, CV_8UC1);
}
else if (channel == 3)
{
img_merge.create(size, CV_8UC3);
}
for (int i = 0; i < src_vor.size(); i++)
{
cv::Mat cv_temp = img_merge(cv::Rect(src_vor.at(i).cols * i, 0, src_vor.at(i).cols, src_vor.at(i).rows));
src_vor.at(i).copyTo(cv_temp);
}
cv_dst = img_merge.clone();
}
static void pasteFacesInputImage(const cv::Mat& restored_face,cv::Mat& trans_matrix_inv,cv::Mat& bg_upsample)
{
trans_matrix_inv.at<float>(0, 2) += 1.0;
trans_matrix_inv.at<float>(1, 2) += 1.0;
cv::Mat inv_restored;
cv::warpAffine(restored_face, inv_restored, trans_matrix_inv, bg_upsample.size(), 1, 0);
cv::Mat mask = cv::Mat::ones(cv::Size(512, 512), CV_8UC1) * 255;
cv::Mat inv_mask;
cv::warpAffine(mask, inv_mask, trans_matrix_inv, bg_upsample.size(), 1, 0);
cv::Mat inv_mask_erosion;
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(4, 4));
cv::erode(inv_mask, inv_mask_erosion, kernel);
cv::Mat pasted_face;
cv::bitwise_and(inv_restored, inv_restored, pasted_face, inv_mask_erosion);
int total_face_area = cv::countNonZero(inv_mask_erosion);
int w_edge = int(std::sqrt(total_face_area) / 20);
int erosion_radius = w_edge * 2;
cv::Mat inv_mask_center;
kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(erosion_radius, erosion_radius));
cv::erode(inv_mask_erosion, inv_mask_center, kernel);
int blur_size = w_edge * 2;
cv::Mat inv_soft_mask;
cv::GaussianBlur(inv_mask_center, inv_soft_mask, cv::Size(blur_size + 1, blur_size + 1), 0, 0, 4);
for (int h = 0; h < bg_upsample.rows; h++)
{
for (int w = 0; w < bg_upsample.cols; w++)
{
float alpha = inv_soft_mask.at<uchar>(h, w) / 255.0;
bg_upsample.at<cv::Vec3b>(h, w)[0] = pasted_face.at<cv::Vec3b>(h, w)[0] * alpha + (1 - alpha) * bg_upsample.at<cv::Vec3b>(h, w)[0];
bg_upsample.at<cv::Vec3b>(h, w)[1] = pasted_face.at<cv::Vec3b>(h, w)[1] * alpha + (1 - alpha) * bg_upsample.at<cv::Vec3b>(h, w)[1];
bg_upsample.at<cv::Vec3b>(h, w)[2] = pasted_face.at<cv::Vec3b>(h, w)[2] * alpha + (1 - alpha) * bg_upsample.at<cv::Vec3b>(h, w)[2];
}
}
}
int main(int argc, char** argv)
{
GFPGAN gfpgan;
gfpgan.initModel("models/encoder.param", "models/encoder.bin", "models/style.bin");
Face face_detector;
face_detector.initModel("models/blazeface.param", "models/blazeface.bin");
RealESRGAN real_esrgan;
real_esrgan.initModel("models/real_esrgan.param", "models/real_esrgan.bin");
std::string path = "images";
std::vector<std::string> filenames;
cv::glob(path, filenames, false);
int i = 0;
for (auto v : filenames)
{
cv::Mat img = cv::imread(v, 1);
cv::Mat bg_upsample;
real_esrgan.tile_process(img, bg_upsample);
std::vector<cv::Mat> trans_img;
std::vector<cv::Mat> trans_matrix_inv;
std::vector<Object> objects;
face_detector.detect(img, objects);
face_detector.align_warp_face(img, objects, trans_matrix_inv, trans_img);
for (size_t i = 0; i < objects.size(); i++)
{
ncnn::Mat gfpgan_result;
gfpgan.process(trans_img[i], gfpgan_result);
cv::Mat restored_face;
toOcv(gfpgan_result, restored_face);
pasteFacesInputImage(restored_face, trans_matrix_inv[i], bg_upsample);
}
ncnn::Mat gfpgan_result;
gfpgan.process(img, gfpgan_result);
cv::Mat restored_face;
toOcv(gfpgan_result, restored_face);
cv::resize(img, img, bg_upsample.size());
cv::resize(restored_face, restored_face, bg_upsample.size());
std::vector<cv::Mat> cv_dsts{ img, restored_face, bg_upsample };
cv::Mat cv_dst;
mergeImage(cv_dsts, cv_dst, 3);
cv::imwrite(std::to_string(i)+".png", cv_dst);
i++;
}
return 0;
}
效果图:
标签:bg,Mat,inv,C++,face,照片,result,GFPGAN,cv 来源: https://blog.csdn.net/matt45m/article/details/122850020