【数据结构 | C语言】求图(邻接表)两个顶点之间的简单路径算法 C语言实现
作者:互联网
文章目录
算法
void SamplePath(pGraph graph, ElemType vexa, ElemType vexb) {
// path是结构体类型,存放图的顶点,和存储数量。就是个栈
Path *path = (Path *) malloc(sizeof(Path));
memset(path, 0, sizeof(Path));
// 标志数组
bool searched[MAX_SIZE];
bool found=false;
int i;
for (i=0; i<MAX_SIZE; i++)
searched[i] = false;
// 先找到 a
for (i=0; i<graph->vexnum; i++)
if (graph->vertices[i].data==vexa)
break;
// 调用 SampleP 生成路径
SampleP(graph, i, vexb, path, searched, 0, &found);
// 如果遍历完图,没有找到路径,说明两顶点不连通
if (path->path[path->final-1].data!=vexb) {
printf("%c与%c不连通\n", vexa, vexb);
return ;
}
for (int i=0; i<path->final; i++)
printf("%c\t", path->path[i].data);
printf("\n");
}
// 参数: v,搜索的结点索引, vexb 是目标结点, path 存放路径, found 如果找到了就为 true,否则一直为 false
void SampleP(pGraph graph, int v, ElemType vexb, Path *path, bool *searched, bool *found) {
searched[v] = true;
// 把当前结点添加进 路径 中
Add(path, graph->vertices[v]);
// 循环遍历结点的邻接点
for (ArcNode *arc=graph->vertices[v].firstArc; arc!=NULL && *found==false; arc=arc->nextArc) {
// 如果找到了,把 目标顶点添加进 路径中
if (graph->vertices[arc->adj].data==vexb) {
*found = true;
Add(path, graph->vertices[arc->adj]);
}
// 如果没遍历过该结点,递归遍历
else if (searched[arc->adj]==false)
SampleP(graph, arc->adj, vexb, path, searched, found);
}
// 没找到,把当前结点退出栈
if (*found==false)
Delete(path);
}
文字说明
搜索路径,利用栈
- 把遍历的结点入栈,并遍历该结点的邻接点。
- 若邻接点未被访问过,递归搜索邻接点
- 如果所有的邻接点遍历完,都没有目标结点,那么当前结点出栈。退回上一个顶点
- 重复 步骤 1-3 。
- 当找到结点时, found 相当于全局变量,告诉递归函数,已经找到
完整代码
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# define MAX_SIZE 20
# define true 1
# define false 0
typedef char ElemType;
typedef int bool;
typedef enum {
DG, DN, UDG, UDN
} GraphKind;
typedef struct ArcNode {
int adj; // 指向弧头
struct ArcNode *nextArc; // 指向的下一个弧头
ElemType *info; // 弧尾信息
} ArcNode;
typedef struct {
ElemType data; // 数据域
ArcNode *firstArc; // 第一个弧头
} VNode, AdjList[MAX_SIZE];
typedef struct {
VNode path[MAX_SIZE];
int final;
} Path;
typedef struct {
AdjList vertices; // 数据域
int vexnum, arcnum; // 顶点数,弧数
GraphKind kind; // 图类型
} Graph, *pGraph;
// 路径
void Add(Path *path, VNode c);
void Delete(Path *path);
// 图
pGraph CreateGraph(GraphKind kind);
void AddVex(pGraph graph, ElemType vex);
void AddArc(pGraph graph, ElemType vexa, ElemType vexb);
// 求两个顶点之间的简单路径
void SamplePath(pGraph graph, ElemType vexa, ElemType vexb);
void SampleP(pGraph graph, int v, ElemType vexb, Path *path, bool *searched, bool *found);
int main() {
pGraph graph = CreateGraph(DG);
// 添加结点
AddVex(graph, 'a');
AddVex(graph, 'b');
AddVex(graph, 'c');
AddVex(graph, 'd');
AddVex(graph, 'e');
AddVex(graph, 'f');
AddVex(graph, 'g');
AddVex(graph, 'h');
AddVex(graph, 'k');
// 添加弧
AddArc(graph, 'a', 'b');
AddArc(graph, 'c', 'a');
AddArc(graph, 'b', 'd');
AddArc(graph, 'b', 'e');
AddArc(graph, 'd', 'h');
AddArc(graph, 'e', 'h');
AddArc(graph, 'c', 'f');
AddArc(graph, 'c', 'g');
AddArc(graph, 'f', 'g');
/*
// 广度优先遍历
WidFirstSearch(graph, 'a');
// 深度优先遍历
DeepFirstSearch(graph, 'a');
*/
/*
// 创建图
pGraph graph = CreateGraph(UDN);
// 添加顶点
AddVex(graph, 'a');
AddVex(graph, 'b');
AddVex(graph, 'c');
AddVex(graph, 'd');
AddVex(graph, 'e');
AddVex(graph, 'f');
AddVex(graph, 'g');
// 添加边
AddArc(graph, 'a', 'b');
AddArc(graph, 'a', 'c');
AddArc(graph, 'a', 'd');
AddArc(graph, 'a', 'e');
AddArc(graph, 'a', 'f');
AddArc(graph, 'a', 'g');
AddArc(graph, 'b', 'c');
AddArc(graph, 'd', 'e');
AddArc(graph, 'f', 'g');
*/
// 找路径
SamplePath(graph, 'a', 'k');
SamplePath(graph, 'a', 'e');
return 0;
}
pGraph CreateGraph(GraphKind kind) {
pGraph new = (pGraph) malloc(sizeof(Graph));
memset(new, 0, sizeof(Graph));
new->kind = kind;
return new;
}
void AddVex(pGraph graph, ElemType vex) {
graph->vertices[graph->vexnum++].data = vex;
}
void AddArc(pGraph graph, ElemType vexa, ElemType vexb) {
// 找到元素索引
int index_a, index_b;
for (int i=0; i<graph->vexnum; i++) {
if (graph->vertices[i].data==vexa)
index_a = i;
if (graph->vertices[i].data==vexb)
index_b = i;
}
// 创建弧结点
ArcNode *node = (ArcNode *) malloc(sizeof(ArcNode));
memset(node, 0, sizeof(ArcNode));
node->adj = index_b;
// 添加弧结点
if (graph->vertices[index_a].firstArc==NULL)
graph->vertices[index_a].firstArc = node;
else {
ArcNode *final = graph->vertices[index_a].firstArc;
while (final->nextArc!=NULL)
final = final->nextArc;
final->nextArc = node;
}
// 弧的另一个结点
node = (ArcNode *) malloc(sizeof(ArcNode));
memset(node, 0, sizeof(ArcNode));
node->adj = index_a;
// 添加弧结点
if (graph->vertices[index_b].firstArc==NULL)
graph->vertices[index_b].firstArc = node;
else {
ArcNode *final = graph->vertices[index_b].firstArc;
while (final->nextArc!=NULL)
final = final->nextArc;
final->nextArc = node;
}
graph->arcnum++;
}
void SamplePath(pGraph graph, ElemType vexa, ElemType vexb) {
Path *path = (Path *) malloc(sizeof(Path));
memset(path, 0, sizeof(Path));
// 标志数组
bool searched[MAX_SIZE];
bool found=false;
int i;
for (i=0; i<MAX_SIZE; i++)
searched[i] = false;
// 先找到 a
for (i=0; i<graph->vexnum; i++)
if (graph->vertices[i].data==vexa)
break;
SampleP(graph, i, vexb, path, searched, &found);
if (path->path[path->final-1].data!=vexb) {
printf("%c与%c不连通\n", vexa, vexb);
return ;
}
for (int i=0; i<path->final; i++)
printf("%c\t", path->path[i].data);
printf("\n");
}
void SampleP(pGraph graph, int v, ElemType vexb, Path *path, bool *searched, bool *found) {
searched[v] = true;
Add(path, graph->vertices[v]);
for (ArcNode *arc=graph->vertices[v].firstArc; arc!=NULL && *found==false; arc=arc->nextArc) {
if (graph->vertices[arc->adj].data==vexb) {
*found = true;
Add(path, graph->vertices[arc->adj]);
}
else if (searched[arc->adj]==false)
SampleP(graph, arc->adj, vexb, path, searched, found);
}
if (*found==false)
Delete(path);
}
void Add(Path *path, VNode c) {
path->path[path->final++] = c;
}
void Delete(Path *path) {
path->final--;
}
标签:AddVex,vexb,graph,vertices,C语言,AddArc,path,求图,数据结构 来源: https://blog.csdn.net/qq_49150070/article/details/122800760