第二届“思特奇杯”编程之星算法挑战赛初赛
作者:互联网
第十一届蓝桥杯大赛第二次模拟(软件类)真题(python组)
1.12.5MB
【问题描述】在计算机存储中,12.5MB是多少字节?
【答案提交】这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
1MB = 1024KB
1KB = 1024B
print(12.5*1024*1024)
# 13107200.0
2.最多边数
【问题描述】
一个包含有2019个结点的有向图,最多包含多少条边?(不允许有重边)
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
用n表示图中顶点的数目,e表示边或者弧的数目,则对于无向图来说,e的取值范围为0-(1/2)n(n-1);对于有向图来说,e的取值范围为0-n(n-1)
print(2019*2018)
# 4074342
3.单词重排
【问题描述】
将LANQIAO中的字母重新排列,可以得到不同的单词,如LANQIAO、AAILNOQ等,注意这7个字母都要被用上,单词不一定有具体的英文意义。
请问,总共能排列如多少个不同的单词。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
全排列,然后因为有有两个A,结果除以2
print(7*6*5*4*3*2*1/2)
# 2520.0
4.括号序列
【问题描述】
由1对括号,可以组成一种合法括号序列:()。
由2对括号,可以组成两种合法括号序列:()()、(())。
由4对括号组成的合法括号序列一共有多少种?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
穷举
# 14
5.反倍数
【问题描述】
给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。
请问在 1 至 n 中有多少个反倍数。
【输入格式】
输入的第一行包含一个整数 n。
第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。
【输出格式】
输出一行包含一个整数,表示答案。
【样例输入】
30
2 3 6
【样例输出】
10
【样例说明】
以下这些数满足要求:1, 5, 7, 11, 13, 17, 19, 23, 25, 29。
【评测用例规模与约定】
对于 40% 的评测用例,1 <= n <= 10000。
对于 80% 的评测用例,1 <= n <= 100000。
对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。
n = int(input())
a, b, c = map(int, input().split())
count = 0
for i in range(1, n+1):
if i % a != 0 and i % b != 0 and i % c != 0:
count += 1
print(count)
6.凯撒加密
【问题描述】
给定一个单词,请使用凯撒密码将这个单词加密。
凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,…,w变为z,x变为a,y变为b,z变为c。
例如,lanqiao会变成odqtldr。
【输入格式】
输入一行,包含一个单词,单词中只包含小写英文字母。
【输出格式】
输出一行,表示加密后的密文。
【样例输入】
lanqiao
【样例输出】
odqtldr
【评测用例规模与约定】
对于所有评测用例,单词中的字母个数不超过100。
s = input()
for i in s:
if i < "x":
print(chr(ord(i)+3), end="")
else:
print(chr(ord(i)-23), end="")
7.螺旋
【问题描述】
对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
例如,一个 4 行 5 列的螺旋矩阵如下:
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
【输入格式】
输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
第二行包含两个整数 r, c,表示要求的行号和列号。
【输出格式】
输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
【样例输入】
4 5
2 2
【样例输出】
15
【评测用例规模与约定】
对于 30% 的评测用例,2 <= n, m <= 20。
对于 70% 的评测用例,2 <= n, m <= 100。
对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。
n, m = map(int, input().split()) # 4 5
r, c = map(int, input().split()) # 2 2
ls = [[0 for i in range(m)] for _ in range(n)]
n1, m1 = 0, 0
count = 1
globals()
top = n*m
def ri():
global n1, m1, n, m, count
if m1 >= n1:
for i in range(m1, m): # 向右
ls[n1][i] = count
count += 1
n1 += 1 # 每次向右,上边界都减少1
def d():
global n1, m1, n, m, count
for i in range(n1, n): # 向下
ls[i][m-1] = count
count += 1
m -= 1 # 每次向下,右边界减少1
def le():
global n1, m1, n, m, count
for i in range(m-1, m1-1, -1): # 向左
ls[n-1][i] = count
count += 1
n -= 1 # 每次向左,下边界减少1
def u():
global n1, m1, n, m, count
for i in range(n-1, n1-1, -1): # 向上
ls[i][m1] = count
count += 1
m1 += 1 # 每次向上,右边界减少1
while count <= top:
ri()
d()
le()
u()
print(ls)
8.摆动序列
【问题描述】
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
【输入格式】
输入一行包含两个整数 m,n。
【输出格式】
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
【样例输入】
3 4
【样例输出】
14
【样例说明】
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
【评测用例规模与约定】
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。
9.通电
【问题描述】
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
sqrt((x_1-x_2)(x_1-x_2)+(y_1-y_2)(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
【输入格式】
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
【输出格式】
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
【样例输入】
4
1 1 3
9 9 7
8 8 6
4 5 4
【样例输出】
17.41
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。
————————————————————————————————————————————
10.植树
【问题描述】
小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
【输入格式】
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
【输出格式】
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
【样例输入】
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
【样例输出】
12
【评测用例规模与约定】
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。
————————————————————————————————————————————
标签:count,输出,评测,样例,思特奇杯,初赛,用例,整数,挑战赛 来源: https://blog.csdn.net/weixin_55334398/article/details/122669446