基于Python机器学习方法的电影推荐系统
作者:互联网
整体介绍
- recsys_ui: 前端技术(html5+JavaScript+jquery+ajax)
- recsys_web: 后端技术(Java+SpringBoot+mysql)
- recsys_spider: 网络爬虫(python+BeautifulSoup)
- recsys_sql: 使用SQL数据处理
- recsys_model: pandas, libFM, sklearn. pandas数据分析和数据清洗,使用libFM,sklearn对模型初步搭建
- recsys_core: 使用pandas, libFM, sklearn完整的数据处理和模型构建、训练、预测、更新的程序
- recsys_etl:ETL 处理爬虫增量数据时使用kettle ETL便捷处理数据
为了能够输出一个可感受的系统,我们采购了阿里云服务器作为数据库服务器和应用服务器,在线上搭建了电影推荐系统的第一版,地址是:
www.technologyx.cn
可以注册,也可以使用已有用户:
用户名 | 密码 |
---|---|
gavin | 123 |
gavin2 | 123 |
wuenda | 123 |
欢迎登录使用感受一下。
设计思路
用简单地方式表述一下设计思路,
1.后端服务recsys_web依赖于系统数据库的推荐表‘recmovie’展示给用户推荐内容
2.用户对电影打分后(暂时没有对点击动作进行响应),后台应用会向mqlog表插入一条数据(消息)。
3.新用户注册,系统会插入mqlog中一条新用户注册消息
4.新电影添加,系统会插入mqlog中一条新电影添加消息
5.推荐模块recsys_core会拉取用户的打分消息,并且并行的做以下操作:
a.增量的更新训练样本
b.快速(因服务器比较卡,目前设定了延时)对用户行为进行基于内容推荐的召回
c.训练样本更新模型
d.使用FM,LR模型对Item based所召回的数据进行精排
e.处理新用户注册消息,监听到用户注册消息后,对该用户的属性初始化(统计值)。
f.处理新电影添加消息,更新基于内容相似度而生成的相似度矩阵
注:
- 由于线上资源匮乏,也不想使系统增加复杂度,所以没有直接使用MQ组件,而是以数据库表作为代替。
- recsys_model属于用notebook进行数据分析和数据处理以及建模的草稿,地址为:https://github.com/GavinHacker/recsys_model
- 其余的所有项目的地址索引为:https://github.com/GavinHacker/technologyx
http://www.biyezuopin.vip/search.asp?key=%B5%E7%D3%B0%CD%C6%BC%F6&otype=title&submit2=%B5%E3%CE%D2%CB%D1%CB%F7
模型相关的模块介绍
增量的处理用户comment,即增量处理评分模块
这个模块负责监听来自mqlog的消息,如果消息类型是用户的新的comment,则对消息进行拉取,并相应的把新的comment合并到总的训练样本集合,并保存到一个临时目录
然后更新数据库的config表,把最新的样本集合(csv格式)的路径更新上去
运行截图
消息队列的截图
把csv处理为libsvm数据
这个模块负责把最新的csv文件,异步的处理成libSVM格式的数据,以供libFM和LR模型使用,根据系统的性能确定任务的间隔时间
运行截图
基于内容相似度推荐
当监听到用户有新的comment时,该模块将进行基于内容相似度的推荐,并按照电影评分推荐
运行截图
libFM预测
http://www.libfm.org/
对已有的基于内容推荐召回的电影进行模型预测打分,呈现时按照打分排序
如下图为打分更新
逻辑回归预测
对样本集中的打分做0,1处理,根据正负样本平衡,> 3分为喜欢 即1, <=3 为0 即不喜欢,这样使用逻辑回归做是否喜欢的点击概率预估,根据概率排序
标签:机器,Python,电影,用户,libFM,消息,模块,打分,recsys 来源: https://blog.csdn.net/newlw/article/details/122665580