编程语言
首页 > 编程语言> > 数据结构和算法学习指南,android手机游戏开发从入门到精通

数据结构和算法学习指南,android手机游戏开发从入门到精通

作者:互联网

首先,这里讲的都是普通的数据结构和算法,咱不是搞竞赛的,野路子出生,只解决常规的问题,以面试为最终目标。

另外,以下是我个人的经验的总结,没有哪本算法书会写这些东西,所以请读者试着理解我的角度,别纠结于细节问题,因为这篇文章就是对数据结构和算法建立一个框架性的认识。

从整体到细节,自顶向下,从抽象到具体的框架思维是通用的,不只是学习数据结构和算法,学习其他任何知识都是高效的。

先说数据结构,然后再说算法。

1、数据结构的存储方式

===========

数据结构的存储方式只有两种:****数组(顺序存储)和链表(链式存储)

这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?

我们分析问题,一定要有递归的思想,自顶向下,从抽象到具体。你上来就列出这么多,那些都属于「上层建筑」,而数组和链表才是「结构基础」。因为那些多样化的数据结构,究其源头,都是在链表或者数组上的特殊操作,API 不同而已。

比如说**「队列****」「栈」**这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。

**「图」**的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。

**「散列表」**就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。

「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。

了解 Redis 数据库的朋友可能也知道,Redis 提供列表、字符串、集合等等几种常用数据结构,但是对于每种数据结构,底层的存储方式都至少有两种,以便于根据存储数据的实际情况使用合适的存储方式。

综上,数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,二者的优缺点如下

数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。

2、数据结构的基本操作

===========

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

数组遍历框架,典型的线性迭代结构:

void traverse(int[] arr) {

for (int i = 0; i < arr.length; i++) {

// 迭代访问 arr[i]

}

}

链表遍历框架,兼具迭代和递归结构:

/* 基本的单链表节点 */

class ListNode {

int val;

ListNode next;

}

void traverse(ListNode head) {

for (ListNode p = head; p != null; p = p.next) {

// 迭代访问 p.val

}

}

void traverse(ListNode head) {

// 递归访问 head.val

traverse(head.next)

}

二叉树遍历框架,典型的非线性递归遍历结构:

/* 基本的二叉树节点 */

class TreeNode {

int val;

TreeNode left, right;

}

void traverse(TreeNode root) {

traverse(root.left)

traverse(root.right)

}

你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

二叉树框架可以扩展为 N 叉树的遍历框架:

/* 基本的 N 叉树节点 */

class TreeNode {

int val;

TreeNode[] children;

}

void traverse(TreeNode root) {

for (TreeNode child : root.children)

traverse(child)

}

N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

所谓框架,就是套路。

不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了,下面会具体举例

3、算法刷题指南

========

首先要明确的是,数据结构是工具,算法是通过合适的工具解决特定问题的方法。也就是说,学习算法之前,最起码得了解那些常用的数据结构,了解它们的特性和缺陷。

那么该如何在 LeetCode 刷题呢?之前的文章 算法学习之路 写过一些,什么按标签刷,坚持下去云云。

现在距那篇文章已经过去将近一年了,我不想说那些不痛不痒的话了,直接说具体的建议:

先刷二叉树,先刷二叉树,先刷二叉树

先刷二叉树,先刷二叉树,先刷二叉树

先刷二叉树,先刷二叉树,先刷二叉树

这是我这刷题的亲身体会,下图是我从 2018/10 到 2019/10 这一年的心路历程:

公众号文章的阅读数据显示,大部分人对数据结构相关的算法文章不感兴趣,而是更关心动规回溯分治等等技巧。

为什么要先刷二叉树呢?

因为二叉树是最容易培养框架思维的,而且大部分算法技巧,本质上都是树的遍历问题

刷二叉树看到题目没思路?

根据很多读者的问题,其实大家不是没思路,只是没有理解我们说的「框架」是什么。

**不要小看这几行破代码,几乎

《Android学习笔记总结+最新移动架构视频+大厂安卓面试真题+项目实战源码讲义》

【docs.qq.com/doc/DSkNLaERkbnFoS0ZF】 完整内容开源分享

所有二叉树的题目都是一套这个框架就出来了**。

void traverse(TreeNode root) {

// 前序遍历

traverse(root.left)

// 中序遍历

traverse(root.right)

// 后序遍历

}

补充学习: 一组动画彻底理解二叉树遍历

比如说我随便拿几道题的解法出来,不用管具体的代码逻辑,只要看看框架在其中是如何发挥作用的就行。

LeetCode 124 题,难度 Hard,让你求二叉树中最大路径和,主要代码如下:

看出来了吗,这就是个后序遍历嘛。

LeetCode 105 题,难度 Medium,让你根据前序遍历和中序遍历的结果还原一棵二叉树,很经典的问题吧,主要代码如下:

不要看这个函数的参数很多,只是为了控制数组索引而已,本质上该算法也就是一个前序遍历。

LeetCode 99 题,难度 Hard,恢复一棵 BST,主要代码如下:

标签:学习指南,链表,traverse,遍历,手机游戏,二叉树,数组,android,数据结构
来源: https://blog.csdn.net/m0_65639577/article/details/122160595