编程语言
首页 > 编程语言> > Java8-Stream:2万字20个实例,玩转集合的筛选,java面试题全集骆昊

Java8-Stream:2万字20个实例,玩转集合的筛选,java面试题全集骆昊

作者:互联网

List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

List fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
.collect(Collectors.toList());
System.out.print(“高于8000的员工姓名:” + fiterList);
}
}

运行结果:

高于8000的员工姓名:[Tom, Anni, Owen]

3.3 聚合(max/min/count)

max、min、count这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

image.png

案例一:获取String集合中最长的元素。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“adnm”, “admmt”, “pot”, “xbangd”, “weoujgsd”);

Optional max = list.stream().max(Comparator.comparing(String::length));
System.out.println(“最长的字符串:” + max.get());
}
}

输出结果:

最长的字符串:weoujgsd

案例二:获取Integer集合中的最大值。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional max = list.stream().max(Integer::compareTo); // 自定义排序 Optional max2 = list.stream().max(new Comparator() {
@Override
public int compare(Integer o1, Integer o2) {
return o1.compareTo(o2);
}
});
System.out.println(“自然排序的最大值:” + max.get());
System.out.println(“自定义排序的最大值:” + max2.get());
}
}

输出结果:

自然排序的最大值:11 自定义排序的最大值:11

案例三:获取员工工资最高的人。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

Optional max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
System.out.println(“员工工资最大值:” + max.get().getSalary());
}
}

输出结果:

员工工资最大值:9500

案例四:计算Integer集合中大于6的元素的个数。

import java.util.Arrays;
import java.util.List;

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

long count = list.stream().filter(x -> x > 6).count();
System.out.println(“list中大于6的元素个数:” + count);
}
}

输出结果:

list中大于6的元素个数:4

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:

image

image

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {
public static void main(String[] args) {
String[] strArr = { “abcd”, “bcdd”, “defde”, “fTr” };
List strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

List intList = Arrays.asList(1, 3, 5, 7, 9, 11);
List intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

System.out.println(“每个元素大写:” + strList);
System.out.println(“每个元素+3:” + intListNew);
}
}

输出结果:

每个元素大写:[ABCD, BCDD, DEFDE, FTR] 每个元素+3:[4, 6, 8, 10, 12, 14]

案例二:将员工的薪资全部增加1000。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”)); // 不改变原来员工集合的方式 List personListNew = personList.stream().map(person -> {
Person personNew = new Person(person.getName(), 0, 0, null, null);
personNew.setSalary(person.getSalary() + 10000);
return personNew;
}).collect(Collectors.toList());
System.out.println(“一次改动前:” + personList.get(0).getName() + “–>” + personList.get(0).getSalary());
System.out.println(“一次改动后:” + personListNew.get(0).getName() + “–>” + personListNew.get(0).getSalary()); // 改变原来员工集合的方式 List personListNew2 = personList.stream().map(person -> {
person.setSalary(person.getSalary() + 10000);
return person;
}).collect(Collectors.toList());
System.out.println(“二次改动前:” + personList.get(0).getName() + “–>” + personListNew.get(0).getSalary());
System.out.println(“二次改动后:” + personListNew2.get(0).getName() + “–>” + personListNew.get(0).getSalary());
}
}

输出结果:

一次改动前:Tom–>8900 一次改动后:Tom–>18900 二次改动前:Tom–>18900 二次改动后:Tom–>18900

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“m,k,l,a”, “1,3,5,7”);
List listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] sp

《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》

【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享

lit = s.split(",");
Stream s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());

System.out.println(“处理前的集合:” + list);
System.out.println(“处理后的集合:” + listNew);
}
}

输出结果:

处理前的集合:[m-k-l-a, 1-3-5] 处理后的集合:[m, k, l, a, 1, 3, 5]

3.5 归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

image.png

案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max);

System.out.println(“list求和:” + sum.get() + “,” + sum2.get() + “,” + sum3);
System.out.println(“list求积:” + product.get());
System.out.println(“list求和:” + max.get() + “,” + max2);
}
}

输出结果:

list求和:29,29,29 list求积:2112 list求和:11,11

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”)); // 求工资之和方式1: Optional sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
(sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
(max1, max2) -> max1 > max2 ? max1 : max2);

System.out.println(“工资之和:” + sumSalary.get() + “,” + sumSalary2 + “,” + sumSalary3);
System.out.println(“最高工资:” + maxSalary + “,” + maxSalary2);
}
}

输出结果:

工资之和:49300,49300,49300 最高工资:9500,9500

3.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

下面用一个案例演示toList、toSet和toMap:

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));

Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
.collect(Collectors.toMap(Person::getName, p -> p));
System.out.println(“toList:” + listNew);
System.out.println(“toSet:” + set);
System.out.println(“toMap:” + map);
}
}

运行结果:

toList:[6, 4, 6, 6, 20] toSet:[4, 20, 6] toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

3.6.2 统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”)); // 求总数 Long count = personList.stream().collect(Collectors.counting()); // 求平均工资 Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

System.out.println(“员工总数:” + count);
System.out.println(“员工平均工资:” + average);
System.out.println(“员工工资总和:” + sum);
System.out.println(“员工工资所有统计:” + collect);
}
}

运行结果:

员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

3.6.3 分组(partitioningBy/groupingBy)

image.png

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, “female”, “New York”)); // 将员工按薪资是否高于8000分组 Map<Boolean, List> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map<String, List> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); // 将员工先按性别分组,再按地区分组 Map<String, Map<String, List>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
System.out.println(“员工按薪资是否大于8000分组情况:” + part);
System.out.println(“员工按性别分组情况:” + group);
System.out.println(“员工按性别、地区:” + group2);
}
}

输出结果:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));

String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
System.out.println(“所有员工的姓名:” + names);
List list = Arrays.asList(“A”, “B”, “C”);
String string = list.stream().collect(Collectors.joining("-"));
System.out.println(“拼接后的字符串:” + string);
}
}

运行结果:

所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C

3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”)); // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子) Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
System.out.println(“员工扣税薪资总和:” + sum); // stream的reduce Optional sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
System.out.println(“员工薪资总和:” + sum2.get());
}
}

运行结果:

员工扣税薪资总和:8700 员工薪资总和:23700

3.7 排序(sorted)

sorted,中间操作。有两种排序:

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();

personList.add(new Person(“Sherry”, 9000, 24, “female”, “New York”));
personList.add(new Person(“Tom”, 8900, 22, “male”, “Washington”));
personList.add(new Person(“Jack”, 9000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 8800, 26, “male”, “New York”));
personList.add(new Person(“Alisa”, 9000, 26, “female”, “New York”)); // 按工资升序排序(自然排序) List newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList()); // 按工资倒序排序 List newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList()); // 先按工资再按年龄自定义排序(降序) List newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());

System.out.println(“按工资升序排序:” + newList);
System.out.println(“按工资降序排序:” + newList2);
System.out.println(“先按工资再按年龄升序排序:” + newList3);
System.out.println(“先按工资再按年龄自定义降序排序:” + newList4);
}
}

运行结果:

按工资自然排序:[Lily, Tom, Sherry, Jack, Alisa] 按工资降序排序:[Sherry, Jack, Alisa,Tom, Lily] 先按工资再按年龄自然排序:[Sherry, Jack, Alisa, Tom, Lily] 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。

image

image

image

public class StreamTest {
public static void main(String[] args) {
String[] arr1 = { “a”, “b”, “c”, “d” };
String[] arr2 = { “d”, “e”, “f”, “g” };

Stream stream1 = Stream.of(arr1);
Stream stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

};
String[] arr2 = { “d”, “e”, “f”, “g” };

Stream stream1 = Stream.of(arr1);
Stream stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

标签:面试题,20,stream,Stream,personList,Person,add,new,out
来源: https://blog.csdn.net/m0_64383736/article/details/121899685