Python RabbitMQ基础知识
作者:互联网
rabbitmq
-
概念
消息队列是一种异步的服务间通信方式,是分布式系统中重要的组件,在很多生产环境中需要控制并发量的场景下用到。消息队列可为这些分布式应用程序提供通信和协调。当前使用较多的消息队列有RabbitMQ、RocketMQ、ActivateMQ、Kafka等。
- Broker:简单来说就是消息队列服务器实体
- Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列
- Queue:消息队列载体,每个消息都会被投入到一个或多个队列
- Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来
- Routing Key:路由关键字,exchange根据这个关键字进行消息投递
- vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离
- producer:消息生产者,就是投递消息的程序
- consumer:消息消费者,就是接受消息的程序
- channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务
-
应用场景
- 应用解耦:多用用间通过消息队列对同一个消息处理,避免调用接口失败导致整个过程失败。
- 异步处理:多应用对消息队列中同一消息进行处理,应用间并发处理消息,相比串行处理,减少处理时间
- 限流削峰:双十一,618等抢购活动。
- 消息驱动系统:业务体量不断扩大,采用微服务设计思想,分布式的部署方式。
成本:
- 应用复杂度:需要对消息队列进行管理
- 暂时不一致性
使用消息队列满足条件:
- 生产者不需要立刻从消费者出获得反馈
- 容许短暂的不一致性
- 起到解耦,提速,广播,削峰等作用
Docker安装
rabbitmq是在portain平台上安装rabbitmq-management。
- 访问dockerhub,搜索rabbitmq,点击进去rabbitmq获取rabbitmq-management的dockerfile链接。
FROM rabbitmq:3.9
RUN set eux; \
rabbitmq-plugins enable --offline rabbitmq_management; \
# make sure the metrics collector is re-enabled (disabled in the base image for Prometheus-style metrics by default)
rm -f /etc/rabbitmq/conf.d/management_agent.disable_metrics_collector.conf; \
# grab "rabbitmqadmin" from inside the "rabbitmq_management-X.Y.Z" plugin folder
# see https://github.com/docker-library/rabbitmq/issues/207
cp /plugins/rabbitmq_management-*/priv/www/cli/rabbitmqadmin /usr/local/bin/rabbitmqadmin; \
[ -s /usr/local/bin/rabbitmqadmin ]; \
chmod +x /usr/local/bin/rabbitmqadmin; \
apt-get update; \
apt-get install -y --no-install-recommends python3; \
rm -rf /var/lib/apt/lists/*; \
rabbitmqadmin --version
EXPOSE 15671 15672
- 在Protainer上创建镜像。
-
运行镜像,主要是将容器的15672(management端口)和5672(amqp端口映射出来)。
-
最后访问http://[服务器ip]:15672即可到rabbitmq管理界面,输入默认账号密码guest/guest即可访问。
-
关于rabbitmq管理界面
点击任意一个Exchange:
点击任意一个queue:
用一个邮局的例子来说明各自的作用。首先邮局表示一个队列,邮筒就是一个channel。channel的作用是建立会话任务。每个地方建立一个邮局很“贵”类似每次建立TCP/IP链接非常“贵”且耗时,用户也无需每次跑到邮局,只需要把信放在邮筒即可。邮局收到用户的信后,根据信封上的地址(exchange)投递给收信方。
python实现
- 简单消费者生产者模式
import pika
import json
credentials = pika.PlainCredentials(user, user) # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = host,port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明消息队列,消息将在这个队列传递,如不存在,则创建
result = channel.queue_declare(queue = 'python-test')
for i in range(10):
message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名
channel.basic_publish(exchange = '',routing_key = 'python-test',body = message)
print('send:'+message)
connection.close()
credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '192.168.3.130',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 申明消息队列,消息在这个队列传递,如果不存在,则创建队列
channel.queue_declare(queue = 'python-test', durable = False)
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
ch.basic_ack(delivery_tag = method.delivery_tag)
print('receive:'+body.decode())
# 告诉rabbitmq,用callback来接收消息
channel.basic_consume('python-test',callback)
# 开始接收信息,并进入阻塞状态,队列里有信息才会调用callback进行处理
channel.start_consuming()
把消费的代码注释掉,我们在rabbitmq management看看
import pika
import json
credentials = pika.PlainCredentials(user, user) # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = host,port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明消息队列,消息将在这个队列传递,如不存在,则创建
result = channel.queue_declare(queue = 'python-test')
for i in range(10):
message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名
channel.basic_publish(exchange = '',routing_key = 'python-test',body = message)
print('send:'+message)
connection.close()
# credentials = pika.PlainCredentials('guest', 'guest')
# connection = pika.BlockingConnection(pika.ConnectionParameters(host = '192.168.3.130',port = 5672,virtual_host = '/',credentials = credentials))
# channel = connection.channel()
# # 申明消息队列,消息在这个队列传递,如果不存在,则创建队列
# channel.queue_declare(queue = 'python-test', durable = False)
# # 定义一个回调函数来处理消息队列中的消息,这里是打印出来
# def callback(ch, method, properties, body):
# ch.basic_ack(delivery_tag = method.delivery_tag)
# print('receive:'+body.decode())
# # 告诉rabbitmq,用callback来接收消息
# channel.basic_consume('python-test',callback)
# # 开始接收信息,并进入阻塞状态,队列里有信息才会调用callback进行处理
# channel.start_consuming()
Ack mode选择Automatic Ack模式后,消费消息自动确认
- 工作模式
一对多模式,一个生产者,多个消费者,一个队列,每个消费者从队列中获取唯一的消息。有两种消息分发机制,轮询分发和公平分发:轮询分发的特点是将消息轮流发送给每个消费者,在实际情况中,多个消费者,难免有的处理得快,有的处理得慢,如果都要等到一个消费者处理完,才把消息发送给下一个消费者,效率就大大降低了。而公平分发的特点是,只要有消费者处理完,就会把消息发送给目前空闲的消费者,这样就提高消费效率了。
# producer
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True)
message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(
exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode=2, # make message persistent
))
print(" [x] Sent %r" % message)
connection.close()
# consumer
import pika
import time
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
time.sleep(body.count(b'.'))
print(" [x] Done")
ch.basic_ack(delivery_tag=method.delivery_tag)
# 公平分发
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue='task_queue', on_message_callback=callback)
channel.start_consuming()
- Publish/Subscribe模式
publish.py
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout')
message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs', routing_key='', body=message)
print(" [x] Sent %r" % message)
connection.close()
Subscribe.py
import pika
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout')
result = channel.queue_declare(queue='', exclusive=True)
queue_name = result.method.queue
channel.queue_bind(exchange='logs', queue=queue_name)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r" % body)
channel.basic_consume(
queue=queue_name, on_message_callback=callback, auto_ack=True)
channel.start_consuming()
- 路由模式
producer.py
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs', exchange_type='direct')
severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(
exchange='direct_logs', routing_key=severity, body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
consumer.py
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs', exchange_type='direct')
result = channel.queue_declare(queue='', exclusive=True)
queue_name = result.method.queue
severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1)
for severity in severities:
channel.queue_bind(
exchange='direct_logs', queue=queue_name, routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(
queue=queue_name, on_message_callback=callback, auto_ack=True)
channel.start_consuming()
- Topic模式
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs', exchange_type='topic')
routing_key = sys.argv[1] if len(sys.argv) > 2 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(
exchange='topic_logs', routing_key=routing_key, body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()
import pika
import sys
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs', exchange_type='topic')
result = channel.queue_declare('', exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1)
for binding_key in binding_keys:
channel.queue_bind(
exchange='topic_logs', queue=queue_name, routing_key=binding_key)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(
queue=queue_name, on_message_callback=callback, auto_ack=True)
channel.start_consuming()
- 路由模式
import pika
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue')
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
def on_request(ch, method, props, body):
n = int(body)
print(" [.] fib(%s)" % n)
response = fib(n)
ch.basic_publish(exchange='',
routing_key=props.reply_to,
properties=pika.BasicProperties(correlation_id = \
props.correlation_id),
body=str(response))
ch.basic_ack(delivery_tag=method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue='rpc_queue', on_message_callback=on_request)
print(" [x] Awaiting RPC requests")
channel.start_consuming()
import pika
import uuid
class FibonacciRpcClient(object):
def __init__(self):
self.connection = pika.BlockingConnection(
pika.ConnectionParameters(host='localhost'))
self.channel = self.connection.channel()
result = self.channel.queue_declare(queue='', exclusive=True)
self.callback_queue = result.method.queue
self.channel.basic_consume(
queue=self.callback_queue,
on_message_callback=self.on_response,
auto_ack=True)
def on_response(self, ch, method, props, body):
if self.corr_id == props.correlation_id:
self.response = body
def call(self, n):
self.response = None
self.corr_id = str(uuid.uuid4())
self.channel.basic_publish(
exchange='',
routing_key='rpc_queue',
properties=pika.BasicProperties(
reply_to=self.callback_queue,
correlation_id=self.corr_id,
),
body=str(n))
while self.response is None:
self.connection.process_data_events()
return int(self.response)
fibonacci_rpc = FibonacciRpcClient()
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)
参考
标签:pika,exchange,Python,RabbitMQ,基础知识,queue,队列,connection,channel 来源: https://blog.csdn.net/u012655441/article/details/120373963