算法入门 - 基于动态数组的栈和队列(Java版本)
作者:互联网
之前我们学习了动态数组的实现,接下来我们用它来实现两种数据结构——栈和队列。首先,我们先来看一下栈。
什么是栈?
栈是计算机的一种数据结构,它可以临时存储数据。那么它跟数组有何区别呢?
我们知道,在数组中无论添加元素还是删除元素,都可以根据索引位置或值进行操作,栈是否也支持这样的操作呢?答案是不行,栈最大的特点就是后进先出(Last In First Out, LIFO):
栈虽然看似简单,但是在计算机世界中有着非常重要的作用。比如在连续调用时,就利用了栈的特性:
public static void addNum(){
System.out.println("加法运算");
Scanner scanner = new Scanner(System.in);
System.out.print("请输入整数a:");
int a = scanner.nextInt();
System.out.print("请输入整数b:");
int b = scanner.nextInt();
System.out.println("a + b = " + (a + b));
}
public static void main(String[] args) {
addNum();
}
这里,在调用 addNum 方法时,内部又依次调用了两次 Scanner 实现输入。所以可以这么看,先调用了 addNum 方法,但是必须等待两次 Scanner 调用完成后,addNum 方法才能结束:
了解了栈后进先出的特点,我们就可以使用动态数组进行模拟了。
使用动态数组模拟栈
模拟的关键点在于“后进”和“先出”,也就是说,如果使用数组模拟的话,入栈时需要从数组尾部添加元素(addLast),出栈时也从尾部出栈(removeLast):
所以这样一来,数组头部实际上是栈底,数组尾部是栈顶。
接下来我们就用代码实现。
代码实现
首先定义栈的接口,规范栈的操作:
package com.algorithm.stack;
public interface Stack <E> {
void push(E element); // 入栈
E pop(); // 出栈
E peek(); // 查看栈顶元素
int getSize(); // 获取栈长度
boolean isEmpty(); // 判断栈是否为空
}
按照刚才说的,只要分别使用动态数组的 addLast() 和 removeLast() 方法替代栈的 push() 和 pop() 方法即可:
package com.algorithm.stack;
import com.algorithm.dynamicarrays.Array;
// 使用动态数组实现栈结构
// 栈底: index = 0; 栈顶: index = size - 1 (push: O(1), pop: O(1))
// 如果栈顶设在index=0的位置,push和pop都将面临较大开销(O(n))
public class ArrayStack<E> implements Stack<E>{
private Array<E> arr; // 使用之前实现的Array动态数组模拟栈
public ArrayStack(int capacity){
arr = new Array<>(capacity);
}
public ArrayStack(){
arr = new Array<>();
}
// 从栈顶压入
@Override
public void push(E element){
arr.addLast(element);
}
// 从栈顶弹出
@Override
public E pop(){
return arr.removeLast();
}
// 从栈顶返回
@Override
public E peek(){
return arr.getLast();
}
// 栈长度
@Override
public int getSize(){
return arr.getSize();
}
// 栈容量
public int getCapacity(){
return arr.getCapacity();
}
// 判断栈是否为空
@Override
public boolean isEmpty(){
return arr.isEmpty();
}
@Override
public String toString(){
StringBuilder str = new StringBuilder();
str.append(String.format("Stack: size = %d, capacity = %d\n[", getSize(), getCapacity()));
for (int i=0; i<getSize(); i++) {
str.append(arr.get(i));
if (i < getSize() - 1) {
str.append(", ");
}
}
str.append("] top"); // 标识出栈顶位置
return str.toString();
}
// main函数测试
public static void main(String[] args) {
ArrayStack<Integer> arrayStack = new ArrayStack<>();
for (int i =0; i<5; i++){
arrayStack.push(i);
System.out.println(arrayStack);
}
// pop
arrayStack.pop();
System.out.println(arrayStack);
}
}
/*
输出结果:
Stack: size = 1, capacity = 10
[0] top
Stack: size = 2, capacity = 10
[0, 1] top
Stack: size = 3, capacity = 10
[0, 1, 2] top
Stack: size = 4, capacity = 10
[0, 1, 2, 3] top
Stack: size = 5, capacity = 10
[0, 1, 2, 3, 4] top
Stack: size = 4, capacity = 10
[0, 1, 2, 3] top
*/
结果符合预期。
栈的时间复杂度分析
入栈对应的数组操作是 addLast(),我们可以通过查看该方法的具体实现进行分析:
/**
* 在指定位置添加元素
* 指定位置处的元素需要向右侧移动一个单位
* @param index 索引
* @param element 要添加的元素
*/
public void add(int index, E element) {
if (index < 0 || index > size) throw new IllegalArgumentException("Illegal index, index must > 0 and <= size!");
// 数组满员触发扩容
if (getSize() == getCapacity()) {
resize(2 * getCapacity()); // 扩容为原数组的2倍
}
// 从尾部开始,向右移动元素,直到index
for (int i = getSize() - 1; i >= index; i--) {
data[i + 1] = data[i];
}
// 添加元素
data[index] = element;
size++;
}
// 数组尾部添加元素
public void addLast(E element) {
add(getSize(), element);
}
/**
* 删除指定位置元素
* 通过向左移动一位,覆盖指定位置处的元素,实现删除元素(data[size - 1] = null)
* @param index 索引
*/
public E remove(int index) {
if (index < 0 || index > size) throw new IllegalArgumentException("Illegal index, index must > 0 and < size!");
// 数组长度为0时抛出异常
if (getSize() == 0) throw new IllegalArgumentException("Empty array!");
E removedElement = data[index];
// 向左移动元素
for (int i = index; i < getSize() - 1; i++) {
data[i] = data[i + 1];
}
// 将尾部空闲出的位置置为空,释放资源
data[getSize() - 1] = null;
size--;
// size过小触发数组缩减
if (size == getCapacity() / 4 && getCapacity() / 2 != 0) resize(getCapacity() / 2);
return removedElement;
}
// 删除尾部元素
public E removeLast() {
return remove(getSize() - 1);
}
可以看出,每次从数组尾部添加元素时,add() 方法的 for 循环都无法满足条件,等同于直接在 size 处添加元素,所以时间复杂度为 O(1)。如果再考虑数组满员后触发的 resize 操作,相当于是进行了 n+1 次 add() 操作后才会触发 n次操作的 resize(移动n个元素至新数组),所以每次 add() 操作平均耗时为 \(\frac{2n+1}{n+1} \approx 2\),是一个与数组长度 n 无关的数,所以也可以看做是 O(1) 复杂度的。
同理,出栈对应的 removeLast() 的时间复杂度也是 O(1)。
什么是队列?
理解了栈后,队列就更简单了。实际上,队列是我们日常生活中几乎每天都会碰到的。我们去超市买东西结账时需要排队,去银行办理业务时需要排队,做核酸、打疫苗就更需要排队了
标签:index,arr,Java,入门,队列,getSize,int,数组,public 来源: https://www.cnblogs.com/dev-liu/p/15186452.html